Direct solution for three dimensional electric or magnetic field vectors throughout the frequency spectrum is accomplished by a finite element formulation which includes displacement and conduction currents, and requires no special treatment for material interfaces. Analysis of bus bar and Bath cube eddy current problems demonstrate the capabilities of the method. / Spurious components in solutions to vector field problems are shown to corrupt deterministic solutions. These corruptions are identifiable with spurious modes familiar to high frequency modal analysis. Spectrally correct mixed order finite elements are demonstrated to retrieve accuracy in deterministic analyses. / The formulation may be limited by computer round-off at matrix assembly which affects the solenoidality of vector fields. Furthermore, extreme values encountered in low frequency eddy current analysis lead to ill conditioning and unreliable solutions. These numerical instabilities are overcome by parametric adjustment of permittivities. Error estimates are established to monitor inaccuracies introduced by permittivity adjustment.
Identifer | oai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:QMM.75780 |
Date | January 1988 |
Creators | Pinchuk, Amy Ruth |
Publisher | McGill University |
Source Sets | Library and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada |
Language | English |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Format | application/pdf |
Coverage | Doctor of Philosophy (Department of Electrical Engineering.) |
Rights | All items in eScholarship@McGill are protected by copyright with all rights reserved unless otherwise indicated. |
Relation | alephsysno: 000660293, proquestno: AAINL46189, Theses scanned by UMI/ProQuest. |
Page generated in 0.0013 seconds