Return to search

Superfícies com curvatura média constante não nula

Neste trabalho são tratados alguns resultados sobre superfícies com curvatura média constante, imersas na R3, sendo destacadas os teoremas de DELAUNAY (1841), LIEBMANN (1900), H. HOPF (1956), A.D. ALEXANDROV (1957) e J. RIPOLL (1985). Demonstra-se, com algum detalhamento, o leorema de DELAUNA Y para o caso da cônica -que rola, sobre urna reta, sem deslizar, ser uma elipse e não uma hipérbole, como no trabalho original, bem como prova-se 1que para gue a superfície de revolução com curvatura média constante seja completa, tal cônica deve ser, obrigatoriamanente, uma elipse. Utiliza-se, neste último teorema, resultados mais recentes como o de'i'ido a W. HSIANG (1981). São também demonstrados o clássico teorema de ALEXANDROV de caracterização da esfera, como única superfície compacta e conexa que possui curvatura média constante não nula, e o de J. RIPOLL que generaliza o anterior pais substitui a hipótese de compaticidade por outra mais fraca que é a sua completude, embora exija que seja propriamente mergulhada na R 3, bem como sua inclusão num cone plano.

Identiferoai:union.ndltd.org:IBICT/oai:lume56.ufrgs.br:10183/131345
Date January 1988
CreatorsMedeiros, Nubem Airton Cabral
ContributorsSebastiani Artecona, Marcos Antonio Arturo
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Formatapplication/pdf
Sourcereponame:Biblioteca Digital de Teses e Dissertações da UFRGS, instname:Universidade Federal do Rio Grande do Sul, instacron:UFRGS
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0064 seconds