Return to search

On the Usage of Artificial Neural Networks for Cyber-Physical Threat Detection in DETECT / Om användningen av artificiella neuronnät för detektering av cyber-fysikaliska hot i DETECT

This thesis explores how a detection engine using Artificial Neural Networks (ANNs) could be implemented within the DETECT framework. The framework is used for security purposes in Cyber-physical systems. These are critical systems often vital to important infrastructure so discovering new ways of how to defend against threats is of huge importance. However, there are many difficult challenges that needs to be addressed before employing an ANN as a threat detection mechanism. Most notable what kind of ANN to use, training data and issues such as over-fitting. These challenges were addressed in the model that was created for this paper. The model was based on the current literature and previous research. To make informed decisions about the model a literature review was carried out to gather as much information as possible. A key insight from the review was the use of recurrent neural networks for threat detection.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:lnu-105161
Date January 2021
CreatorsAnjel, Elise, Bäckström, Samuel
PublisherLinnéuniversitetet, Institutionen för datavetenskap och medieteknik (DM), Linnéuniversitetet, Institutionen för datavetenskap och medieteknik (DM)
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0112 seconds