Return to search

A CYBERSECURITY FRAMEWORK FOR WIRELESS-CONTROLLED SMART BUILDINGS

<p>Due
to the rapid development of wireless communication and network technology, more
and more wireless devices (e.g., Siemens, Lutron, etc.) are used in residential
and commercial buildings. The wireless system has many advantages that
traditional wired-based systems do not have, such as time-saving deployment and
easy maintenance. However, the wireless system is also vulnerable to
cyber-attacks since the data packets are transmitted by radio waves rather than
by physical medium. The current cyber detection system (e.g., Intrusion
detection system) monitors the data traffic to identify the anomalies in the
network. However, it is unable to detect the attacks that tamper with the
control logic or operating parameters, which results in the malfunction of the
system. This thesis developed an integrated, cyber-security framework for
cyber-attack detection in smart buildings.</p>

<p>The
objective of this research is to develop an integrated cyber-security framework
for wireless-based smart building systems to protect buildings from the
cyber-attacks. The wireless-based smart building systems are operated and
controlled by either a two-position or continuous controlled approach. The
efforts in this study have developed a cyber-security framework to deal with both
two-position control and continuous control. For the two-position controlled
smart buildings, the developed cyber-security framework integrates the data and
models of both cyber and physical domains of building systems to detect faults,
abnormal operations, and cyber attacks. The cyber-security framework developed
for the continuous controlled system combines a data-driven model for detecting
the faults of sensor measurements and a physical model based on engineering
principle (e.g., laws of thermodynamics or control logic) to detect the anomaly
of system operation.</p>

<p>To
develop the cyber-security frameworks, the testbeds corresponding to the
two-position and continuous wireless systems were constructed for
attack-oriented tests. A wireless-based lighting system for smart homes was
used as the testbed for the study of the two-position control. It has a
wireless occupancy sensor, an actuator for the light switch, and an open-source
operating platform (OpenHAB) for system control and monitor. The platform of
the wireless is the ZigBee. An indoor shading system at a living lab in new
Herrick building at Purdue University was utilized as the testbed for the study
of the continuous controlled system. The indoor shading system exploits the roller
shades to block the excess daylighting to provide an acceptable illuminance
condition for occupants. The shading system uses the wireless illuminance
sensor, weather condition, and wire-based controller to automatically operate
the shades for the acceptable illuminance. </p>

<p>The
study implemented designed cyber-attacks to validate the effectiveness of the
developed frameworks. The final results show that the developed two models were
able to detect the attacks effectively (95-100% attacks identified and
isolated). The abnormal operations tested in two-position control system were
identified when an abnormal state was triggered, or the modelled state and real
state did not match in the finite state machine model developed. For continuous
control, the abnormal operations were detected when there is a significant
deviation between the modelled measurement and the actual measurement. The
cybersecurity framework developed in the thesis demonstrates an effective
approach for detecting system faults caused by attacks. The frameworks could be
widely used for other different building systems and beyond buildings, such as
transportation or industrial manufacturing systems.</p>

  1. 10.25394/pgs.9037010.v1
Identiferoai:union.ndltd.org:purdue.edu/oai:figshare.com:article/9037010
Date12 October 2021
CreatorsFeng Wu (6313133)
Source SetsPurdue University
Detected LanguageEnglish
TypeText, Thesis
RightsCC BY 4.0
Relationhttps://figshare.com/articles/thesis/A_CYBERSECURITY_FRAMEWORK_FOR_WIRELESS-CONTROLLED_SMART_BUILDINGS/9037010

Page generated in 0.002 seconds