The growing adoption of smart manufacturing systems and its related technologies (e.g., embedded sensing, internet-of-things, cyber-physical systems, big data analytics, and cloud computing) is promising a paradigm shift in the manufacturing industry. Such systems enable extracting and exchanging actionable knowledge across the different entities of the manufacturing cyber-physical system and beyond. From a quality control perspective, this allows for more opportunities to realize proactive product design; real-time process monitoring, diagnosis, prognosis, and control; and better product quality characterization. However, a multitude of challenges are arising, with the growing adoption of smart manufacturing, including industrial data characterized by increasing volume, velocity, variety, and veracity, as well as the security of the manufacturing system in the presence of growing connectivity. Taking advantage of these emerging opportunities and tackling the upcoming challenges require creating novel quality control and data analytics methods, which not only push the boundaries of the current state-of-the-art research, but discover new ways to analyze the data and utilize it.
One of the key pillars of smart manufacturing systems is real-time automated process monitoring, diagnosis, and control methods for process/product anomalies. For machining applications, traditionally, deterioration in quality measures may occur due to a variety of assignable causes of variation such as poor cutting tool replacement decisions and inappropriate choice cutting parameters. Additionally, due to increased connectivity in modern manufacturing systems, process/product anomalies intentionally induced through malicious cyber-attacks -- aiming at degrading the process performance and/or the part quality -- is becoming a growing concern in the manufacturing industry. Current methods for detecting and diagnosing traditional causes of anomalies are primarily lab-based and require experts to perform initial set-ups and continual fine-tuning, reducing the applicability in industrial shop-floor applications. As for efforts accounting for process/product anomalies due cyber-attacks, these efforts are in early stages. Therefore, more foundational research is needed to develop a clear understanding of this new type of cyber-attacks and their effects on machining processes, to ensure smart manufacturing security both on the cyber and the physical levels.
With primary focus on machining processes, the overarching goal of this dissertation work is to explore new ways to expand the use and value of manufacturing data-driven methods for better applicability in industrial shop-floors and increased security of smart manufacturing systems. As a first step toward achieving this goal, the work in this dissertation focuses on adopting this goal in three distinct areas of interest: (1) Statistical Process Monitoring of Time-Between-Events Data (e.g., failure-time data); (2) Defending against Product-Oriented Cyber-Physical Attacks on Intelligent Machining Systems; and (3) Modeling Machining Process Data: Time Series vs. Spatial Point Cloud Data Structures. / PHD / Recent advancements in embedded sensing, internet-of-things, big data analytics, cloud computing, and communication technologies and methodologies are shifting the modern manufacturing industry toward a novel operational paradigm. Several terms have been coined to refer to this new paradigm such as cybermanufacturing, industry 4.0, industrial internet of things, industrial internet, or more generically smart manufacturing (term to be used henceforth). The overarching goal of smart manufacturing is to transform modern manufacturing systems to knowledge-enabled Cyber-Physical Systems (CPS), in which humans, machines, equipment, and products communicate and cooperate together in real-time, to make decentralized decisions resulting in profound improvements in the entire manufacturing ecosystem. From a quality control perspective, this allows for more opportunities to utilize manufacturing process data to realize proactive product design; real-time process monitoring, diagnosis, prognosis, and control; and better product quality characterization.
With primary focus on machining processes, the overarching goal of this work is to explore new ways to expand the use and value of manufacturing data-driven methods for better applicability in industrial shop-floors and increased security of smart manufacturing systems. As a first step toward achieving this goal, the work in this dissertation focuses on three distinct areas of interest: (1) Monitoring of time-between-events data of mechanical components replacements (e.g., failure-time data); (2) Defending against cyber-physical attacks on intelligent machining systems aiming at degrading machined parts quality; and (3) Modeling machining process data using two distinct data structures, namely, time series and spatial point cloud data.
Identifer | oai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/96812 |
Date | 23 August 2018 |
Creators | Shafae, Mohammed Saeed Abuelmakarm |
Contributors | Industrial and Systems Engineering, Camelio, Jaime A., Wells, Lee Jay, Woodall, William H., Kong, Zhenyu |
Publisher | Virginia Tech |
Source Sets | Virginia Tech Theses and Dissertation |
Detected Language | English |
Type | Dissertation |
Format | ETD, application/pdf, application/pdf |
Rights | In Copyright, http://rightsstatements.org/vocab/InC/1.0/ |
Page generated in 0.002 seconds