<p dir="ltr">We are in the midst of the fourth industrial revolution, and manufacturers are looking<br>to digitally transform their processes in order to leverage new technologies such as adap-<br>tive automation, virtual reality and digital twin driven simulation. A key aspect of this<br>revolution compared to previous is the increased availability of data and accessibility of<br>machines throughout the production process enabled by cyber-physical systems (CPS) and<br>IoT. However, the integration of many devices is challenging, requiring significant capital<br>and expertise. This can limit smaller players from benefiting from technological gains as<br>well as stymie research, particularly advanced human-computer-interaction (HCI) investiga-<br>tions which are becoming increasingly relevant.<br>Thus in this thesis we develop a framework for CPS creation and communication that<br>is amenable to the needs of HCI and convergence research. We develop several middleware<br>components to bridge the communication gap of many common fabrication machines and<br>other devices. The middleware translates device specific protocols into a shared language to<br>alleviate the user interface (UI) programs of this responsibility and promote reuse. Addi-<br>tionally, we develop an extension to the glTF model format to leverage this shared protocol<br>to enable the UI to load and interact with an arbitrary number of devices in an intuitive<br>manner at runtime. Finally, we discuss several applications to demonstrate the system’s<br>utility for research.</p>
Identifer | oai:union.ndltd.org:purdue.edu/oai:figshare.com:article/24783846 |
Date | 12 December 2023 |
Creators | Moiz S Rasheed (17611824) |
Source Sets | Purdue University |
Detected Language | English |
Type | Text, Thesis |
Rights | CC BY 4.0 |
Relation | https://figshare.com/articles/thesis/A_Makerspace_Cyber_Physical_System_for_Convergence_Research/24783846 |
Page generated in 0.0021 seconds