Cyclic di-GMP is a second messenger used by bacteria to regulate motility, extracellular polysaccharide production, and the cell cycle. Recent advances in the measurement of real time cyclic di-GMP levels in single cells have uncovered significant dynamic heterogeneity of second messenger concentrations within bacterial populations. This heterogeneity results in a wide range of phenotypic outcomes within a single population, providing the potential for population survival and adaptability in response to rapidly changing environments. In this chapter, we discuss some of the measurement technologies available for single-cell measurement of cyclic di-GMP concentrations, the resulting discovery of heterogeneous cyclic di-GMP populations, the mechanisms bacteria use to generate this heterogeneity, and the biochemical and functional consequences of heterogeneity on cyclic di-GMP effector binding and the bacterial population.
Identifer | oai:union.ndltd.org:ETSU/oai:dc.etsu.edu:etsu-works-2-1521 |
Date | 05 March 2020 |
Creators | Miller, Samuel I., Petersen, Erik |
Publisher | Digital Commons @ East Tennessee State University |
Source Sets | East Tennessee State University |
Detected Language | English |
Type | text |
Source | ETSU Faculty Works |
Page generated in 0.0021 seconds