Return to search

The metabolic and muscular adaptations to cycle training with Powercranks

PowercranksTM are a device that enables the user to cycle with each leg acting independently of the other. This type of cycling forces the rider to actively pull up with the hip and knee flexors throughout the recovery phase of the pedaling cycle. While the metabolic benefits of training with PowercranksTM are known, no research has investigated what, if any, strength benefits result from training. The purpose of this study was to examine how strength, submaximal oxygen consumption, hear rate, gross efficiency, and muscle activation were affected by 6 weeks of PowercranksTM training, compared to a traditional cycling training. A total of 1 1 recreationally trained adult subjects (5 males, 6 females) were randomly placed into either the PowercranksTM group (PC) or regular cranks (RC) group. Subjects trained 3 days per week following a progressive interval protocol for 6 weeks. Prior to and following training, subjects were measured for peak isokinetic knee and hip flexion/extension strength, timing of muscular contractions, and submaximal VO2, heart rate, and gross efficiency. A MANOVA for strength values pre-post were not significant. However, large effect sizes implied that there were increases in knee and hip flexion for the PC group (d =1.00,1.63, respectively). Heart rate was found to be significant at all 4 time points (p = 0.001, 0.011, 0.001, 0.000 for time points 1-4, respectively). MANOVAs for VO2 and GE did not yield significant results. Muscular timing was also unchanged as a result of training. While the PowercranksTM did not have an effect on VO2 and GE in untrained subjects, HR decreased, suggesting an aerobic benefit. The possible strength benefits in untrained subjects resulting from PowercrankTM training could prove beneficial for individuals looking to recover from injury. / School of Physical Education, Sport, and Exercise Science

Identiferoai:union.ndltd.org:BSU/oai:cardinalscholar.bsu.edu:handle/188279
Date January 2007
CreatorsFerguson, Matthew J.
ContributorsDugan, Eric L
Source SetsBall State University
Detected LanguageEnglish
Formatx, 95 leaves : ill. ; 28 cm.
SourceVirtual Press

Page generated in 0.0033 seconds