In this dissertation novel methods are proposed for communicating in interference limited environments as well as detecting such interference. The methods include introducing redundancies into multicarrier signals to make them more robust, applying a novel filtering structure for mitigating radar interference to orthogonal frequency division multiplexing (OFDM) signals and for exploiting the cyclostationary nature of signals to whiten the spectrum in blind signal detection.
Data symbols are repeated in both time and frequency across orthogonal frequency division multiplexing (OFDM) symbols, creating a cyclostationary nature in the signal. A Frequency Shift (FRESH) filter can then be applied to the cyclostationary signal, which is the optimal filter and is able to reject interference much better than a time-invariant filter such as the Wiener filter. A novel time-varying FRESH filter (TV-FRESH) filter is developed and its Minimum Mean Squared Error (MMSE) filter weights are found.
The repetition of data symbols and their optimal combining with the TV-FRESH filter creates an effect of improving the Bit Error Rate (BER) at the receiver, similar to an error correcting code. The important distinction for the paramorphic method is that it is designed to operate within cyclostationary interference, and simulation results show that the symbol repetition can outperform other error correcting codes. Simulated annealing is used to optimize the signaling parameters, and results show that a balance between the symbol repetition and error correcting codes produces a better BER for the same spectral efficiency than what either method could have achieved alone.
The TV-FRESH filter is applied to a pulsed chirp radar signal, demonstrating a new tool to use in radar and OFDM co-existence. The TV-FRESH filter applies a set of filter weights in a periodically time-varying fashion. The traditional FRESH filter is periodically time-varying due to the periodicities of the frequency shifters, but applies time-invariant filters after optimally combine any spectral redundancies in the signal. The time segmentation of the TV-FRESH filter allows spectral redundancies of the radar signal to be exploited across time due to its deterministic nature.
The TV-FRESH filter improves the rejection of the radar signal as compared to the traditional FRESH filter under the simulation scenarios, improving the SINR and BER at the output of the filter. The improvement in performance comes at the cost of additional filtering complexity.
A time-varying whitening filter is applied to blindly detect interference which overlaps with the desired signal in frequency. Where a time-invariant whitening filter shapes the output spectrum based on the power levels, the proposed time-varying whitener whitens the output spectrum based on the spectral redundancy in the desired signal. This allows signals which do not share the same cyclostationary properties to pass through the filter, improving the sensitivity of the algorithm and producing higher detection rates for the same probability of false alarm as compared to the time-invariant whitener. / Ph. D. / This dissertation proposes novel methods for building robust wireless communication links which can be used to improve their reliability and resilience while under interference. Wireless interference comes from many sources, including other wireless transmitters in the area or devices which emit electromagnetic waves such as microwaves. Interference reduces the quality of a wireless link and depending on the type and severity may make it impossible to reliably receive information. The contributions are both for communicating under interference and being able to detect interference. A novel method for increasing the redundancy in a wireless link is proposed which improves the resiliency of a wireless link. By transmitting additional copies of the desired information the wireless receiver is able to better estimate the original transmitted signal. The digital receiver structure is proposed to optimally combine the redundant information, and simulation results are used to show its improvement over other analogous methods. The second contribution applies a novel digital filter for mitigating interference from a radar signal to an Orthogonal Frequency Division Multiplexing (OFDM) signal, similar to the one which is being used in Long Term Evolution (LTE) mobile phones. Simulation results show that the proposed method out performs other digital filters at the most of additional complexity. The third contribution applies a digital filter and trains it such that the output of the filter can be used to detect the presence of interference. An algorithm which detects interference can tip off an appropriate response, and as such is important to reliable wireless communications. Simulation results are used to show that the proposed method produces a higher probability of detection while reducing the false alarm rate as compared to a similar digital filter trained to produce the same effect.
Identifer | oai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/85126 |
Date | 24 September 2018 |
Creators | Carrick, Matthew David |
Contributors | Electrical Engineering, Reed, Jeffrey H., Beex, Aloysius A., Buehrer, R. Michael, Harris, Fredric Joel, Koelling, C. Patrick |
Publisher | Virginia Tech |
Source Sets | Virginia Tech Theses and Dissertation |
Detected Language | English |
Type | Dissertation |
Format | ETD, application/pdf |
Rights | In Copyright, http://rightsstatements.org/vocab/InC/1.0/ |
Page generated in 0.0024 seconds