Return to search

NA<sup>+</sup>,K<sup>+</sup>-ATPase Activity and Ultrastructural Localization in the Tegmentum Vasculosum in the Cochlea of the Duckling

The tegmentum vasculosum of the avian cochlear duct mimics the stria vascularis of the mammalian cochlear duct in both location and structure, and previous studies indicate that it may be its functional counterpart with regard to endolymph synthesis. In the present study, we report on the enzymatic activity and ultrastructural localization of the Na+,K+-ATPase in the tegmentum vasculosum of the duckling. Na+,K+-ATPase activity was determined by measuring K+-dependent, ouabain-sensitive p-nitrophenyl phosphatase (p-NPPase) activity in homogenates of dissected regions of the cochlear duct. The ultrastructural localization of the Na+,K+-ATPase was identified using K+-dependent, ouabain-sensitive, p-NPPase cytochemistry. Specific enzyme activity was localized primarily in homogenates of the tegmentum vasculosum (2.27 μmol p-nitrophenyl phosphate/mg protein/min) when compared to homogenates of the entire cochlear duct (0.69 μmol p-nitrophenyl phosphate/mg protein/min). Reaction product for p-NPPase was localized primarily along the basolateral plasma membrane folds of the dark cells. The cytochemical deposits appeared to be located exclusively on the cytoplasmic side of the plasma membrane. The light cells were devoid of reaction product. Biochemical and cytochemical localization of p-NPPase activity on the basolateral plasma membrane folds of the dark cells of the tegmentum vasculosum in conjunction with the ultrastructural morphology of these cells is compatible with a Na+,K+-ATPase-dependent ion transport function related to endolymph synthesis.

Identiferoai:union.ndltd.org:ETSU/oai:dc.etsu.edu:etsu-works-20232
Date17 April 2002
CreatorsHossler, Fred E., Avila, Francisco C., Musil, George
PublisherDigital Commons @ East Tennessee State University
Source SetsEast Tennessee State University
Detected LanguageEnglish
Typetext
SourceETSU Faculty Works

Page generated in 0.0021 seconds