Tyrosine kinase inhibitors (TKI) are small organic molecules designed for the targeted cancer therapy. They perform the inhibition of activated receptor tyrosine kinases in tumor cells, that defeats tumor growth, proliferation, metastasis and angiogenesis in tumor tissue. Two TKI, lenvatinib and vandetanib, are used in thyroid cancer treatment. This thesis investigates the ways leading to enhancement of efficiency of these anticancer drugs for therapy. One of the studied anticancer drug - lenvatinib - was investigated to be prepared in a nanoform. Nanoparticles were based on protein apoferritin as well as on lipids. Theoretical model of lenvatinib interaction with an apoferritin cavity, as well as the model of its encapsulation obtained by computer modeling indicated that lenvatinib seems not to be suitable for preparation of apoferritin nanoparticles. Since lenvatinib occurs in its neutral form during preparation of nanoparticles, it does not interact with nanoparticle. The unsuccessful experimental preparation of lenvatinib-loaded apoferritin nanoparticles confirmed that lenvatinib is not suitable for its preparation. However, the theoretical model can serve for screening of other potentially suitable drugs before the experimental nanoparticle preparation. Since the experimental preparation of...
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:397009 |
Date | January 2019 |
Creators | Takácsová, Paulína |
Contributors | Stiborová, Marie, Černá, Tereza |
Source Sets | Czech ETDs |
Language | Czech |
Detected Language | English |
Type | info:eu-repo/semantics/masterThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0021 seconds