Return to search

Úloha tkáňově specifických izoforem podjednotky 4 v sestavování a funkci cytochrom c oxidázy / The role of tissue specific isoforms of subunit 4 in assembly and function of cytochrome c oxidase

Oxidative phosphorylation apparatus (OXPHOS) is responsible for production of majority of ATP in mammalian organisms. This process, occurring in the inner mitochondrial membrane, is partly regulated by nuclear-encoded subunits of cytochrome c oxidase (COX), the terminal enzyme of electron transport chain. Cox4 subunit, participating in OXPHOS regulation, is an early-assembly state subunit, which is necessary for incorporation of Cox2 catalytic subunit, thus for assembly of catalytically functional COX enzyme. Moreover, regulated expression of two isoforms (Cox4i1, Cox4i2) of Cox4 subunit is hypothesized to optimize respiratory chain function according to tissue oxygen supply. However, the functional impact of the isoform switch for mammalian tissues and cells is still only partly understood. In the present thesis, unique HEK293 cell line-based model with complete absence of subunit Cox4 (knock-out, KO) was prepared employing novel CRISPR CAS9-10A paired nickase technology and further characterized. Knock-out of both isoforms Cox4i1 and Cox4i2 (COX4i1/4i2 KO clones) showed general decrease of majority of Cox subunits resulting in total absence of fully assembled COX. Moreover, detected Complex I subunits as well as the content of assembled Complex I were decreased in COX4i1/4i2 KO clones. On the...

Identiferoai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:380758
Date January 2018
CreatorsČunátová, Kristýna
ContributorsPecina, Petr, Stibůrek, Lukáš
Source SetsCzech ETDs
LanguageEnglish
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/masterThesis
Rightsinfo:eu-repo/semantics/restrictedAccess

Page generated in 0.0038 seconds