Return to search

Influence of iron and cytokinin on Cynodon spp. cultured at chilling temperatures

Bermudagrass (<i>Cynodon</i> spp.), when cultured at the northern limit of adaptation for semitropical grasses, is exposed seasonally to temperatures low enough to limit growth and turf quality. Research was conducted to investigate the influence of foliar iron and cytokinin applications on bermudagrass growth during fall and spring. The relationship of photosynthesis, respiration, and nonstructural carbohydrate composition to chilling temperatures was also studied.

Foliar applications of Fe in late-summer and fall extended bermudagrass performance during low temperature periods of fall. Frequent Fe applications aided the retention of green bermudagrass turf during prolonged exposure to chilling temperatures. Iron applied the previous season stimulated post-dormancy recovery. Benzyladenine (BA) applied alone was not as effective as Fe for promoting green bermudagrass color retention during fall and BA had few effects on spring growth when applied the previous season. Applications of BA in conjunction with Fe were beneficial for retention of green bermudagrass color during late fall when clear plastic covers were used to prevent frost injury. A 6- to 8-week longer bermudagrass growing season occurred when clear plastic covers were used to prevent frost injury. Iron and BA did not significantly affect the total nonstructural carbohydrate (TNC) levels in Midiron bermudagrass rhizomes and stolons at the onset of dormancy in field studies.

Midiron bermudagrass had higher photosynthetic and respiration rates than Tifgreen bermudagrass after 4 days exposure to chilling (10/7°C day/night) temperatures in controlled environment studies. Midiron recovered higher photosynthetic rates than Tifgreen when returned to a warm (30°C) environment after exposure to chilling temperatures. The TNC in leaves of Midiron and Tifgreen increased 88 and 160%, respectively, during 5 days at chilling temperatures. The inability to transport carbohydrate from and the subsequent accumulation of high photoassimilate levels in leaves was associated with the inability of bermudagrass to fully recover high photosynthetic rates following chilling. Reduced respiratory activity was apparently responsible for the accumulation of high TNC levels in leaves.

In contrast to photosynthesis, respiration was reversibly inhibited by short term exposure of bermudagrass to chilling temperatures. Rapid recovery of high respiratory activity may be important for maintenance of aesthetically pleasing bermudagrass turf following chilling.

Foliar applied Fe or BA generally caused darker green Midiron and Tifgreen turf after exposure to chilling temperatures in a controlled environment, although the enhancement of physiological activity differed with chemical applied and cultivar. Iron stimulated recovery of photosynthetic and respiratory activity in both cultivars after exposure to chilling temperatures. However, during chilling Midiron CO₂ exchange was more responsive to Fe applications.

Benzyladenine increased photosynthesis in Tifgreen but not in Midiron and did not significantly affect respiration in either cultivar. Neither Fe nor BA had a consistent effect on TNC levels in bermudagrass leaves, rhizomes, or stolons.

These investigations indicate that cultivar selection may play a major role in determining turf quality at chilling temperatures. Iron may modify bermudagrass physiology and enhance performance of bermudagrass exposed to chilling temperatures. / Ph. D. / incomplete_metadata

Identiferoai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/49961
Date January 1985
CreatorsWhite, Richard Hampton
ContributorsAgronomy, Schmidt, Richard E., Bingham, Samuel W., Hall, J.R. III, Parrish, David, Wolf, D.D.
PublisherVirginia Polytechnic Institute and State University
Source SetsVirginia Tech Theses and Dissertation
Detected LanguageEnglish
TypeDissertation, Text
Formatxii, 157 leaves, application/pdf, application/pdf
RightsIn Copyright, http://rightsstatements.org/vocab/InC/1.0/
RelationOCLC# 13174984

Page generated in 0.0018 seconds