Return to search

Diversit?? des arbres, interactions a??riennes et souterraines et d??composition des feuilles mortes

R??sum?? : La d??composition des liti??res v??g??tales a ??t?? d??crite comme ??tant la deuxi??me plus importante fonction ??cosyst??mique sur terre, apr??s la productivit?? primaire. Alors que la photosynth??se fournit les apports ??nerg??tiques ?? la plupart des cha??nes alimentaires, la d??composition recycle les nutriments, permet leur utilisation future par d???autres organismes et relargue dans l???atmosph??re le carbone fix?? photosynth??tiquement. Dans un contexte de changement climatique, un grand int??r??t est port?? sur la d??composition des liti??res, car il s???agit, ?? l?????chelle globale, de la plus grande source d?????mission de CO[indice inf??rieur 2] dans l???atmosph??re. Les taux de d??composition des liti??res sont principalement d??termin??s par trois facteurs: les variables climatiques, la structure des communaut??s de d??composeurs et les propri??t??s chimiques et physiques de la liti??re. La structure de la communaut?? v??g??tale h??te dans laquelle se produit la d??composition et d???o?? provient la liti??re peut influencer l???ensemble de ces trois facteurs. Des changements dans la structure de la communaut?? v??g??tale pourraient donc affecter les futurs taux de d??composition et modifier significativement les dynamiques globales du carbone. Malgr?? cela, la communaut?? h??te est rarement prise en compte dans les ??tudes sur la d??composition des liti??res. Des exp??riences enl??vent souvent la liti??re de son environnment naturel de d??composition, mesurant la d??composition des liti??res ?? partir de monolithes ou de microcosmes en laboratoire, afin de contr??ler les variations ind??sirables des propri??t??s du sol. Dans ce m??moire, j?????tudie les effets de plusieurs propri??t??s fonctionnelles de la communaut?? v??g??tale h??te sur les taux de d??composition des liti??res et leur contribution ?? la respiration du sol. En utilisant une plantation exp??rimentale d???arbres qui permet de manipuler la structure de leur communaut??, je teste l???effet de l???identit?? fonctionnelle des arbres, des esp??ces et de la diversit?? fonctionnelle, ainsi que des interactions entre d??composeurs et arbres sur ces processus ??cosyst??miques. La d??composition des liti??res et la respiration du sol sont li??es aux propri??t??s fonctionnelles des plantes. La d??composition des liti??res est bien pr??dite par les valeurs moyennes de traits fonctionnels des liti??res, mais plus faiblement corr??l??e ?? la diversit?? sp??cifique. D???apr??s mes r??sultats, le nombre d???esp??ces en m??lange de liti??res ne constitue pas un facteur important pour la d??composition, ?? cause des interactions globalement idiosyncratiques entre types de liti??res. Cependant, l???augmentation conjointe de la diversit?? fonctionnelle des m??langes d???esp??ces en liti??res et de la communaut?? d???arbres-h??tes acc??l??re les taux de d??composition et la respiration du sol. Les premi??res phases de d??composition de liti??res en surface ne sont que faiblement affect??es par la diversit?? des plantes, alors que pour la respiration du sol, qui prend en compte les derni??res phases de d??composition de liti??re et de mati??re organique du sol, la diversit?? est la propri??t?? fonctionnelle de plantes qui fournit le meilleur pouvoir de pr??diction. De plus, j???ai trouv?? que les apports sp??cifiques de liti??res ?? long terme pouvaient cr??er des conditions qui favorisent la d??composition des liti??res native et pouvaient modifier l???effet de la diversit?? des arbres sur la d??composition. J???attribue cet effet aux r??troactions entre la liti??re et les organismes d??composeurs du sol. Ce travail de recherche fournit une nouvelle perspective sur les effets des changements de structure de communaut?? foresti??re sur les processus de d??composition. La compr??hension de ces effets est n??cessaire pour pr??dire les taux de d??composition de liti??res et les dynamiques globales du carbone. // Abstract : The decomposition of plant litter has been described as the second most important ecosystem function for sustaining life on earth, after primary productivity. Whereas photosynthesis provides the energy input for most food chains, decomposition recycles nutrients for future use by other organisms and returns photosynthetically fixed carbon back to the atmosphere. In the context of climate change, litter decomposition is of specific interest because it represents one of the largest sources of CO[subscript 2] to the atmosphere globally. Rates of litter decomposition are largely determined by three factors: climatic variables, the structure of the decomposer community, and the chemical and physical properties of the litter. The structure of the host plant community under which decomposition takes place and from which the litter is derived can influence all three of these factors. Therefore, any systematic changes in plant community structure could affect future decomposition rates and significantly alter global carbon dynamics. Despite this, the host plant community is rarely considered in litter decomposition studies. Experiments often remove litter from its natural decomposition environment, instead measuring decomposition of litter in common garden settings and laboratory microcosms to control for unwanted variation in soil properties. In this thesis I investigate the effect of several functional properties of the host plant community on rates of litter decomposition and its contribution to soil respiration. Using an experimental tree plantation that manipulates tree community structure, I test the effect of tree functional identity, species and functional diversity, and tree-decomposer interactions on these ecosystem processes. Both litter decomposition and soil respiration were related to plant functional properties. Litter decomposition was best predicted by average-values of litter functional traits and was poorly related to species diversity. The number of species in a litter mixture does not seem to be important for decomposition, as interactions between litter types were idiosyncratic. However increasing the functional diversity both of mixed-species litter and of the host tree community accelerated rates of litter decomposition and soil respiration. Early stages of surface litter decomposition were only marginally affected by plant diversity. In contrast, diversity was the best predictor of soil respiration, which includes latter stages of litter and soil organic matter decomposition. Furthermore, I found that specific repeated litter input to the soil can result in conditions that favour the decomposition of the long-term litter type and can mediate the effect of tree diversity on decomposition. I attribute this effect to feedbacks between the litter and soil decomposer organisms. This research provides insight into the effect of changing forest community structure on decomposition processes. Such an understanding is necessary to predict future rates of litter decomposition and global carbon dynamics.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:QSHERU.3/75
Date January 2014
CreatorsJewell, Mark
ContributorsShipley, John-William
PublisherUniversit?? de Sherbrooke
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish
Detected LanguageFrench
TypeM??moire
Rights?? Mark Jewell

Page generated in 0.0028 seconds