L’imagerie hyperspectrale est un type d’imagerie émergent qui connaît un essor important depuis le début des années 2000. Grâce à une structure spectrale très fine qui produit un volume de donnée très important, elle apporte, par rapport à l’imagerie visible classique, un supplément d’information pouvant être mis à profit dans de nombreux domaines d’exploitation. Nous nous intéressons spécifiquement à la détection et l’analyse de changements entre deux images de la même scène, pour des applications orientées vers la défense.Au sein de ce manuscrit, nous commençons par présenter l’imagerie hyperspectrale et les contraintes associées à son utilisation pour des problématiques de défense. Nous présentons ensuite une méthode de détection et de classification de changements basée sur la recherche de directions spécifiques dans l’espace généré par le couple d’images, puis sur la fusion des directions proches. Nous cherchons ensuite à exploiter l’information obtenue sur les changements en nous intéressant aux possibilités de dé-mélange de séries temporelles d’images d’une même scène. Enfin, nous présentons un certain nombre d’extensions qui pourront être réalisées afin de généraliser ou améliorer les travaux présentés et nous concluons. / Hyperspectral imagery is an emerging imagery technology which has known a growing interest since the 2000’s. This technology allows an impressive growth of the data registered from a specific scene compared to classical RGB imagery. Indeed, although the spatial resolution is significantly lower, the spectral resolution is very small and the covered spectral area is very wide. We focus on change detection between two images of a given scene for defense oriented purposes.In the following, we start by introducing hyperspectral imagery and the specificity of its exploitation for defence purposes. We then present a change detection and analysis method based on the search for specifical directions in the space generated by the image couple, followed by a merging of the nearby directions. We then exploit this information focusing on theunmixing capabilities of multitemporal hyperspectral data. Finally, we will present a range of further works that could be done in relation with our work and conclude about it.
Identifer | oai:union.ndltd.org:theses.fr/2014ECDM0010 |
Date | 24 November 2014 |
Creators | Brisebarre, Godefroy |
Contributors | Ecole centrale de Marseille, Guillaume, Mireille |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0024 seconds