Return to search

Étude des décharges électriques impulsionnelles à pression atmosphérique dans les milieux poreux et/ou alvéolaires

Ce travail porte sur l'étude de la propagation de décharges couronnes impulsionnelles à pression atmosphérique dans les milieux poreux et/ou alvéolaires. Face à la complexité des phénomènes mis en jeu, liés aux interactions entre la décharge et les surfaces du matériau qui la confine, nous proposons l'étude de décharges confinées par des structures élémentaires. L'étude du confinement radial des décharges, assuré par un large panel de capillaires, a été réalisée. Des diagnostics électriques et optiques de pointe permettent d'étudier la propagation de la décharge au sein des différents capillaires. La corrélation entre ces diagnostics a même permis des mesures de vitesse de propagation au sein de capillaires opaques. Les résultats montrent que la propagation de la décharge dépend grandement de la géométrie des capillaires et des paramètres électriques de génération de la décharge. Dans le cas de sections carrées ou rectangulaires, les arêtes induisent un renforcement local du champ qui attire la décharge. Dans le cas de capillaires cylindriques, le diamètre interne est le paramètre crucial qui détermine aussi bien la structure de la décharge que sa vitesse de propagation. Quelle que soit la nature du capillaire, la propagation présente alors une vitesse optimale à tout autre paramètre constant pour une valeur donnée du diamètre interne. Dans le cas du verre, la vitesse est maximale pour un diamètre interne de 200 µm. L'épaisseur et la permittivité diélectrique du capillaire possèdent également une influence sur la propagation de la décharge radialement confinée. Ainsi, diminuer l'épaisseur ou la permittivité diélectrique engendre une accélération de la décharge. Si l'épaisseur est très faible, la décharge peut même se déconfiner pour se propager à l'extérieur du capillaire. Une étude spectroscopique complémentaire montre que la réduction du diamètre de confinement implique une augmentation de la température du plasma, ce qui pourrait contribuer à l'obtention de ce profil de vitesse en fonction du diamètre de confinement. L'étude du confinement axial des décharges a ensuite été réalisée en insérant des membranes de différentes natures et caractéristiques, perpendiculairement à l'axe pointe plan. Les résultats montrent que la décharge présente une propagation en trois étapes : pointe/membrane, radialement au voisinage de la membrane, puis membrane/plan. Dans cette étude, nous avons mis en évidence l'importance du critère poreux ou non de la membrane. Dans le cas poreux, la propagation de la décharge dans l'ensemble du gap est continue, même pour des pores de l'ordre de la dizaine de µm. Dans le cas non poreux, la propagation est discontinue, et il est nécessaire pour assurer la propagation dans l'ensemble du gap qu'un ré-allumage ait lieu de l'autre côté de la membrane. Après l'instant de l'impact sur la membrane, la décharge marque un arrêt qui correspond à la réorganisation des charges et à la restructuration du champ électrique dans le gap. Elle se propage ensuite radialement au voisinage de la membrane en plusieurs fronts d'ionisation. Si les conditions de claquage sont réunies dans le volume membrane/plan, alors un ré-allumage apparaît à partir de la membrane pour atteindre le plan. L'étude de ces ré-allumages semble montrer l'importance de la position de la membrane au sein de l'espace inter-électrodes et de la dynamique des charges aux surfaces de la membrane. Plus on diminue la distance membrane/plan, plus il est facile d'en observer. Nous montrons également que la diminution de la permittivité diélectrique de la membrane ou l'augmentation de son épaisseur, semble augmenter la probabilité de ces ré-allumages. Dans le cas poreux, nous avons également mis en évidence l'influence de la taille des pores de la membrane sur l'ensemble des étapes de propagation. Lorsque la porosité est inférieure à 100 µm la propagation de la décharge est ralentie du fait de la difficulté de la décharge à traverser directement le matériau.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-01062681
Date21 July 2014
CreatorsLe Delliou, Pierre
PublisherUniversité Paris Sud - Paris XI
Source SetsCCSD theses-EN-ligne, France
Languagefra
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0017 seconds