Avec l’apparition de plus en plus de souches de bactérie résistante aux antibiotiques, le développement de nouveaux antibiotiques est devenu une important problématique pour les agences de santé. C’est pour cela que la création de nouvelles plateformes pour accélérer la découverte de médicaments est devenu un besoin urgent. Dans les dernières décennies, la recherche était principalement orientée sur la modification de molécules préexistantes, la méta-analyse d’organismes produisant des molécules activent et l’analyse de librairies moléculaires pour trouver des molécules synthétiques activent, ce qui s’est avéré relativement inefficace. Notre but était donc de développer de nouvelles molécules avec des effets thérapeutiques de façon plus efficace à une fraction du prix et du temps comparé à ce qui se fait actuellement. Comme structure de base, nous avons utilisé des métabolites secondaires qui pouvaient altérer le fonctionnement des protéines ou l’interaction entre deux protéines. Pour générer ces molécules, j’ai concentré mes efforts sur les terpènes, une classe de métabolites secondaires qui possède un large éventail d’activités biologiques incluant des activités antibactériennes. Nous avons développé un système de chromosome artificiel de levure (YAC) qui permet à la fois l’assemblage directionnel et combinatoire de gènes qui permet la création de voies de biosynthèse artificielles. Comme preuve de concept, j’ai développé des YACs qui contiennent les gènes pour l’expression des enzymes impliquées dans la biosynthèse de la -carotène et de l’albaflavenone et produit ces molécules avec un haut rendement. Finalement, Des YACs produits à partir de librairies de gènes ont permis de créer une grande diversité de molécules. / With the appearance of more and more antibiotic resistant strains of bacteria, the development of new antibiotics becomes an issue of utmost importance for society. It is for that reason that new platforms and methodologies to accelerate the discovery of novel antibiotics are urgently needed. For the last decades, research was mainly oriented on modifying existing antibiotics, mining natural producers or screening for synthetic molecules from giant chemical libraries but these approaches did not manage to keep the pipelines filled with a sufficient number of novel antibiotics. Therefore, our goal was to develop a way to create and screen new molecules more efficiently at a fraction of the cost when compared to traditional approaches and within a short time frame. As chemical scaffolds we use natural product-like compounds that modulate the function of individual proteins or of protein-protein interactions. To generate these compounds, I focused first on the terpene scaffold class, a class containing molecules with a wide range of biological activities and includes compounds with antibacterial activities. We developed a yeast artificial chromosome (YAC) platform that allows both directional and combinatorial assembly of biosynthetic genes that can be used to create artificial biosynthetic pathways. As a proof of principle, YACs were successfully assembled containing genes coding for enzymes involved in the biosynthesis of both B-carotene and albaflavenone, and that allowed high yield production of these compounds. Finally, YACs encoding terpene gene libraries were also created and which produced a diversity of terpenoid molecules.
Identifer | oai:union.ndltd.org:umontreal.ca/oai:papyrus.bib.umontreal.ca:1866/16243 |
Date | 04 1900 |
Creators | Jacques, Samuel |
Contributors | Tyers, Michael David |
Source Sets | Université de Montréal |
Language | English |
Detected Language | French |
Type | thesis, thèse |
Page generated in 0.004 seconds