Le thème de cette thèse est l’utilisation de méthodes probabilistes (plus spécifiquement de technique venant de la théorie de la percolation) pour mener une analyse non-perturbative de plusieurs modèles de physique statistique. La thèse est centrée sur les systèmes de spins et les modèles de percolation. Cette famille de modèle comprend le modèle d’Ising, le modèle de Potts, la percolation de Bernoulli, la percolation de Fortuin-Kasteleyn et les modèles de percolation continue. L’objectif principal de la thèse est de démontrer la décroissance exponentielle des corrélations au-dessus de la température critique et d’étudier les états de Gibbs des modèles en dessus. / The underlying theme of this thesis is using probabilistic methods and especially techniques of percolation theory to carry on a non-perturbative analysis of several models of statistical physics. The focus of this thesis is set on spin systems and percolation models including the Ising model, the Potts model, the Bernoulli percolation, the random-cluster model, and the continuum percolation models. The main objective of the thesis is to demonstrate exponential decay of correlations above the critical temperature and study the Gibbs states of the mentioned models.
Identifer | oai:union.ndltd.org:theses.fr/2017SACLS572 |
Date | 13 December 2017 |
Creators | Raoufi, Aran |
Contributors | Paris Saclay, Duminil-Copin, Hugo |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0138 seconds