Return to search

Nouvelle approche neuroprotectrice et remyélinisante par l’étazolate dans le système nerveux central : implication des α-sécrétases (ADAM10) / A new approach promoting neuroprotection and remyelination by etazolate in the central nervous system : implication of α-secretases (ADAM10)

La démyélinisation et la mort oligodendrocytaire sont bien connues dans la sclérose en plaques (SEP). Au cours de ces dernières années, plusieurs études ont également décrit ce type de lésion après un traumatisme crânien (TC), participant à l’aggravation des lésions de la substance blanche, responsables des dysfonctionnements cognitifs et moteurs. Malgré de nombreux efforts, aucune thérapie efficace n’est disponible à ce jour pour traiter les lésions de la substance blanche. Dans ce contexte, une stratégie thérapeutique prometteuse serait de freiner la neuro-inflammation et la démyélinisation, en plus de promouvoir la maturation des oligodendrocytes afin de favoriser la remyélinisation des axones et de limiter ainsi leur dégénérescence. Notre choix de stratégie porte sur la stimulation des processus de réparation endogène via la protéine neuroprotectrice et neurotrophique sAPPα, forme soluble de la protéine βAPP libérée par l’action des α-sécrétases (ADAM10). Dans ce contexte, l’objectif de mes travaux de thèse était d’étudier l’intérêt thérapeutique de l’étazolate, un activateur desα-sécrétases, sur les conséquences biochimiques, histologiques et fonctionnelles, dans différents modèles de TC et de SEP in vivo chez la souris, et ex vivo sur des tranches organotypiques de cervelet. Les résultats obtenus sur le modèle de TC par percussion mécanique chez la souris ont montré pour la première fois le potentiel anti-inflammatoire de l’étazolate, associé à la restauration du taux de la sAPPα. De plus, l’étazolate s’est également opposé aux troubles fonctionnels post-TC tels que l’hyperactivité locomotrice et le déficit cognitif à court et à long terme. Par la suite, j’ai développé un nouveau modèle ex vivo de TC par percussion mécanique sur des tranches organotypiques de cervelet. Nous avons montré pour la première fois que l’étazolate était neuroprotecteur dans le tissu cérébelleux, et qu’il s’opposait à la démyélinisation post-traumatique. Par ailleurs, les effets bénéfiques de l’étazolate sur les gaines de myéline ont été reproduits dans un modèle ex vivo de démyélinisation induite par la lysolécithine, modèle ex vivo de SEP. De façon intéressante nous avons montré que l’étazolate exerçait un effet remyélinisant en stimulant la différenciation des oligodendrocytes. Cet effet a été reproduit in vitro dans des cultures primaires mixtes de cellules gliales issues de souris PLP-eGFP, où la maturation morphologique des oligodendrocytes a été favorisée en présence d’étazolate. L’ensemble des effets bénéfiques exercés par l’étazolate a été inhibé en présence d’un inhibiteur pharmacologique spécifique d’ADAM10, le GI254023X, suggérant que l’effet remyélinisant de l’étazolate dépend, au moins en partie, d’ADAM10. Par la suite, l’effet remyélinisant de l’étazolate a été étudié dans un modèle in vivo de démyélinisation chronique induite par la cuprizone. Dans ce modèle, l’étazolate a été capable de promouvoir la remyélinisation en stimulant la différenciation des oligodendrocytes, confirmant nos résultats in vitro et ex vivo. L’ensemble de mon travail permet de considérer le potentiel thérapeutique de l’étazolate, en visant l’ADAM10 comme nouvelle cible thérapeutique neuroprotectrice et remyélinisante. Cela aura pour intérêt de limiter la neuro-inflammation, la démyélinisation, ainsi que de promouvoir la différenciation des oligodendrocytes et la remyélinisation, afin de favoriser la récupération fonctionnelle suite aux lésions de la substance blanche survenant après un TC ou la SEP chez l’homme. / Demyelination and oligodendrocyte cell death are well established in multiple sclerosis (MS) and are increasingly described after traumatic brain injury (TBI), participating in the aggravation of white matter injury responsible of motor and cognitive deficits. Despite many efforts in clinical research, no efficient therapy against white matter injury progression is available nowadays. Thus, promoting remyelination and counteracting neuroinflammation and demyelination are major therapeutic strategies in order to restore white matter integrity. Here, we studied the stimulation of endogenous repair mechanisms through the neuroprotective and neurotrophic protein sAPPα, the soluble form of βAPP protein released by the α-secretases (ADAM10). In this context, the aim of this work was to evaluate the therapeutic potential of etazolate, an α-secretase activator on short- and long-term biochemical, histological and functional outcome in different mouse models of TBI and MS in vivo, and ex vivo on organotypic cerebellar slices. The results obtained from the TBI mouse model by mechanical percussion showed for the first time the anti-inflammatory effect of etazolate associated to a restoration of sAPPα levels. The same treatment was able to attenuate functional deficits (hyperactivity, cognitive deficit). We also developed a new ex vivo model of TBI by mechanical percussion on organotypic cerebellar slices. We confirmed the neuroprotective effect of etazolate on cerebellar tissue reducing the lesion size. Interestingly, etazolate treatment attenuated post-traumatic ex vivo demyelination. Moreover, the beneficial effect of etazolate on myelin sheaths have been well reproduced after lysolecithin-induced demyelination, an ex vivo model of MS. Interestingly, etazolate was able to enhance remyelination promoting oligodendrocyte differentiation. This effect has been reproduced in the primary mixed glial culture from PLP-eGFP mice, enhancing oligodendrocyte morphological maturation. However, etazolate failed to promote its beneficial effects in the presence of GI254023X, a specific ADAM10 (α-secretase) inhibitor, suggesting that the mechanism of action of etazolate is partly through the activation of ADAM10. Furthermore, etazolate reproduced in vivo the oligodendrocyte differentiation, accompanied by an increase of the myelinated axons, observed by electron microscopy in a mouse model of cuprizone-induced chronic demyelination. Taken together, the findings of this work provide a first evidence for the therapeutic potential of etazolate, with ADAM10 as new therapeutic target in white matter repair. The interest of this approach is to attenuate neuroinflammation and demyelination and to enhance oligodendrocyte differentiation and thus remyelination, in order to promote functional recovery following white matter lesions arising after TBI or MS.

Identiferoai:union.ndltd.org:theses.fr/2016USPCB021
Date20 January 2016
CreatorsLlufriu-Dabén, Gemma
ContributorsSorbonne Paris Cité, Jafarian-Tehrani, Mehrnaz
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0031 seconds