L'objectif de cette étude est le développement d'une base de connaissances pour la conversion d'un déchet problématique en matériau de construction pour des projets de génie civil. Le phénomène de mécanisation des sociétés, la croissance rapide de la population, ainsi que le développement du réseau de transport terrestre par la construction des nouvelles routes et autoroutes ont entraîné une croissance sans cesse de l'industrie automobile à travers le monde et par conséquent l'accumulation de gros volumes de pneus usés. Chaque année, les Américains et les Canadiens éliminent en moyenne environ 300 millions de pneus (respectivement 250 et 30 millions de pneus), ce qui a accru les préoccupations environnementales liées à l'élimination de ces déchets non biodégradables et polluants. Par conséquent, la gestion des déchets de pneus nécessite des méthodes innovantes et efficaces d'élimination et de réutilisation des pneus. Un pneu est généralement composé de trois composants principaux, notamment le caoutchouc, le métal et le tissu. Le cycle de vie des pneus est généralement composé de cinq étapes principales : extraction, production, consommation, collecte des pneus usagés et enfin la gestion des déchets qui comprend les sites enfouissement et la récupération. Grâce à l'un des processus de récupération, les pneus usagés sont découpés en différentes formes et tailles appelées agrégats dérivés de pneus (ADP). Actuellement, des efforts considérables sont en cours au niveau mondial pour recycler les pneus usagés sous forme d'agrégats dérivés de pneus (ADP) à des fins d'ingénierie civile et géotechnique différentes. En tant que géo-matériau, les formes déchiquetées et granulées des pneus usés sont généralement mélangées avec du sable et / ou du limon pour former ce que l'on appelle communément des mélanges sol-ADP. En raison de leur faible poids, de leur bon drainage, de leurs propriétés d'isolation thermique satisfaisantes, de leur atténuation des vibrations, etc., les géo-matériaux d'ingénierie contenant du ADP sont devenus intéressants pour les ingénieurs concepteurs. Cependant, en raison de leur faible module d'élasticité, les mélanges ADP-sol présentent une compressibilité significative par rapport à celle des sols conventionnels. Spécifiquement, la compressibilité excessive des mélanges sol-ADP, qui est composé à la fois de la partie immédiate et celle dépendante du temps est extrêmement difficile à cerner dans les applications où de lourdes charges sus-jacentes sont appliquées. Afin de maximiser leur fiabilité et de minimiser la possibilité de ruptures, il est nécessaire d'avoir une compréhension précise du comportement mécanique (par exemple, élastique, plastique et fluage) des mélanges sol-ADP lorsqu'ils sont soumis à une charge. La présente étude comprend deux phases. Les phases consistent en un programme expérimental qui a été mené pour déterminer les paramètres essentiels d'élasticité, de plasticité et de fluage des mélanges granulés ADP-sable. Des simulations MEF ont ensuite été réalisées aux fins de la validation des résultats des essais. Les valeurs des paramètres obtenus grâce aux observations expérimentales ont été utilisées dans le développement de modèles de comportement qui sont proposés pour les comportements de fluage et de déformation plastique des mélanges sable-ADP. En ce qui concerne le fluage, les résultats indiquent une phase de fluage primaire qui est rapidement passée à une phase de fluage stationnaire secondaire, n'atteignant jamais la phase tertiaire. Il a également été observé que l'ampleur de la déformation de fluage est fortement affectée par la teneur en fraction volumique de l’ADP et la charge appliquée. Cette observation a conduit à l'adoption de la loi Norton-Bailey comme modèle constitutif possible du fluage des mélanges ADP-sable. En outre, un modèle complet de comportement sol-ADP doit également englober la plasticité. Ceci a été réalisé grâce au développement d'un modèle d'état critique, basé sur les paramètres de plasticité obtenus expérimentalement des tests triaxiaux. Les courbes de contrainte déviatorique en fonction de la déformation axiale obtenues avec le modèle d'état critique ont capturé la réponse élastoplastique non linéaire obtenue dans les essais. Les résultats ont indiqué que le niveau de résistance au cisaillement dépend fortement de l'angle de frottement à l'état critique qui à son tour dépend de la teneur en ADP. Pour les mélanges ADP-sable utilisés dans cette étude, l'effet de la teneur en ADP démontre un renforcement de la matrice de sable. Cependant, ce renforcement diminue à mesure que la teneur en ADP augmente. / The aim of this study is the development of a knowledge base for the conversion of a problematic waste product into a construction material for civil engineering projects. The phenomenon of mechanization of the societies, rapidly growing population, and also the development of the land transportation network through the construction of the new roads and highways have resulted in an unceasingly growing of auto industry across the world and consequently accumulation of large volumes of scrap automobile tires. Every year Americans and Canadians together average disposal of approximately 300 million tires (respectively 250 and 30 million tires) which consequently has increased environmental concerns over the disposal of such non-biodegradable and pollutant waste materials. Hence, scrap tire management requires innovative and efficient methods of tire disposal and reuse. A tire is generally made from three main components including rubber, metal, and fabric. The tire life cycle is generally composed of five main stages including extraction, production, consumption, collection of used tires and finally waste management which is comprised of landfilling and recovery. Through one of the recovery processes, scrap tires are cut into different shapes and sizes called tire-derived aggregate (TDA). Presently, global extensive efforts are underway in order to recycle the waste tires in the form of tire-derived aggregate (TDA) for different civil and geotechnical engineering purposes. As a geomaterial, usually the shredded and granulated forms of scrap tires are mixed with sand and/or silt to form what is commonly referred to as soil-TDA mixtures. Due to their lightweight, good drainage, satisfactory thermal insulation properties, vibration mitigation, etc., engineered geomaterials containing TDA have become of interest to design engineers. However, due to their low elastic modulus, TDA-soil mixtures exhibit significant compressibility compared to that of conventional soils. Specifically, the excessive compressibility of soil-TDA mixtures which is composed of both immediate and time-dependent portions is extremely challenging in such applications wherein heavy overlying loads are applied. In order to maximize their reliability and to minimize the possibility of failures, it is necessary to have an accurate understanding on the mechanical behavior (e.g., elastic, plastic and creep) of the soil-TDA mixtures when subjected to loading. The present study consists of two phases. These phases consist of an experimental program that was conducted to determine the elastic, plastic, and creep parameters of TDA-sand granulated mixtures. FEM simulations were subsequently conducted for the purposes of test result validation. Values of the parameters obtained through the experimental observations were used in the development of constitutive models which are proposed for the creep and plastic deformation behaviors of the sand-TDA mixtures. In regard to creep, the results indicate a primary creep phase that rapidly transitioned into a secondary stationary creep phase, never attaining the tertiary phase. It has been also observed that the magnitude of the creep strain is strongly affected by the TDA volume fraction content and the applied load. This observation conducted the adoption of the Norton-Bailey law as a possible constitutive model for creep of TDA-sand mixtures. Furthermore, a complete model of soil-TDA behavior must also encompass plasticity. This was achieved through the development of a critical state model, based on the experimentally obtained plasticity parameters of triaxial tests. The calculated deviatoric stress versus axial strain curves obtained with the critical state model captured the non-linear elastoplastic response obtained in the tests. Results indicated that the level of the shear strength is highly dependent on the critical state friction angle which in turn depends on the TDA content. For the loose TDA-sand mixtures used in this study, the effect of the TDA content demonstrates a reinforcement of the sand matrix. However, this reinforcement diminishes as the TDA content increases.
Identifer | oai:union.ndltd.org:LAVAL/oai:corpus.ulaval.ca:20.500.11794/108503 |
Date | 13 December 2023 |
Creators | Ghafari, Nima |
Contributors | Foriero, Adolfo |
Source Sets | Université Laval |
Language | English |
Detected Language | French |
Type | COAR1_1::Texte::Thèse::Thèse de doctorat |
Format | 1 ressource en ligne (xxi, 165 pages), application/pdf |
Rights | http://purl.org/coar/access_right/c_abf2 |
Page generated in 0.0047 seconds