Dans le cadre de la détection radar en environnement gaussien comme non-gaussien, de nombreux détecteurs ont été développés en se basant sur des modèles de fouillis précis et des estimateurs de matrices adaptés à ces modèles. Les modèles gaussiens, simples d’utilisation, montrent rapidement leurs limites face à la réalité physique et laissent ainsi place aux SIRP, processus aléatoires sphériquement invariants qui rendent compte beaucoup plus fidèlement de la non-gaussianité du fouillis. Les détecteurs adaptés à ces environnements sont alors construits sur la base d’un estimateur de la matrice de covariance adapté. Or, dans de nombreuses applications, cette matrice de covariance présente une structure particulière dite persymétrique. L’objet de cette thèse est donc d’exploiter cette structure particulière de la matrice de covariance du fouillis afin d’en diminuer l’erreur d’estimation. Par cette exploitation, deux nouveaux estimateurs de la matrice ont été déterminés pour les environnements gaussiens et non-gaussiens. Ces détecteurs nommés PAMF et GLRT-PFP, ont été caractérisés statistiquement et une validation des travaux théoriques a été menée sur des données opérationnelles tant gaussiennes que non-gaussiennes. Une application de la persymétrie a également été effectuée dans le cadre des algorithmes spatio-temporels (STAP) ainsi que sur des algorithmes dits "à rang réduit". Les résultats probants en détection obtenus sur tous ces types de données confirment donc l’intérêt de la technique étudiée. Enfin, un élargissement de la structure persymétrique a été étudié par l’extension des détecteurs aux matrices dites de Toeplitz. Ces matrices obtenues dans le cas de traitements spatio-temporels présentent une structuration plus riche encore que la persymétrie et permettent d’envisager des développements futurs intéressants en vue de l’amélioration des performances des détecteurs. Les premiers résultats sont présentés pour conclure ce travail de thèse. / This thesis deals with Radar detection in Gaussian and non-Gaussian noise. In this context, the clutter covariance matrix commonly exhibits a particular persymmetric structure. This structure is exploited into a particular matrix transformation to provide two new covariance matrices estimates for Gaussian and non-gaussian noise. We use then this particular linear transformation in order to develop and to study the statistical property of the two new detectors based on these estimates for both Gaussian and non-Gaussian environments. The improvement in terms of detection performances of these new detectors is shown through a lots of simulations and validation on operational data, for both Gaussian and non- Gaussian noise. Moreover this exploitation is extended to space-time adaptive processing and reduced rank technical. All the results confirm then the high interest of taking into account this particular structure in radar detection process compared to classical detection schemes. The case of Toeplitz matrices is also studied. The Toeplitz matrices are a particular class of structured matrices obtain with space-time processing which theoretically allows to improve the performance of detectors based on this matrix assumption. In this context, some preliminary results are presented in order to conclude this thesis.
Identifer | oai:union.ndltd.org:theses.fr/2010PA100078 |
Date | 10 June 2010 |
Creators | Pailloux, Guilhem |
Contributors | Paris 10, Forster, Philippe |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0039 seconds