Ce travail contribue au programme de recherche et de développement d'un capteur CMOS à pixel qui pourrait satisfaire pleinement les spécifications du nouvel ITS (Inner Tracking System : trajectomètre interne) de l'expérience ALICE. Afin de briser les limites de la CPS de pointe, une technologie CMOS 0.18 µm à quatre puits a été explorée. Les capteurs fabriqués dans cette nouvelle technologie ont montré une meilleure tolérance aux radiations que les capteurs réalisés dans une technologie CMOS 0.35 µm plus ancienne. En outre, cette nouvelle technologie offre la possibilité d’implémenter des transistors de type P dans chaque pixel sans dégrader la capacité de collection de la diode. Il devient donc possible d’intégrer un discriminateur dans chaque pixel et obtenir un pixel à sortie binaire. En conséquence, la consommation sera largement réduite. De plus, le temps de traitement de la ligne peut être potentiellement réduit. Un premier prototype de petite taille, intitulé AROM-0, a été conçu et fabriqué afin d’étudier la faisabilité de la discrimination de signal dans un petit pixel. Dans ce prototype, chaque pixel de surface 22 × 33 µm2 contient une diode de détection, un préamplificateur et un discriminateur à tension d’offset compensée. La performance de bruit des différentes versions de pixels dans le capteur AROM-0 a été évaluée. Ensuite sera détaillé le développement des capteurs AROM-1. Ce sont les capteurs intermédiaires vers le capteur final proposé par notre groupe. Ils ont deux objectifs principaux, l’un est de valider les optimisations de conception du pixel et l’autre est de mettre en place une architecture du capteur évolutive intégrant l’intelligence nécessaire dans le circuit. Cette thèse présente en détail la conception et les résultats de mesure de ces capteurs AROM. / This work is part of the R&D program aimed for a CMOS pixel sensor (CPS) complying with the requirements of the upgrade of the inner tracking system (ITS) of the ALICE experiment. In order break the limitations of the state-of-the-art CPS, a 0.18 µm quadruple-well CMOS process was explored. Besides an enhanced radiation tolerance, with respect to the former sensors fabricated in a 0.35 µm process, the sensor based on this new process allows for full CMOS capability inside the pixel without degradation of the detection efficiency. Therefore, the signal discrimination, which was formerly performed at the column level, can be integrated inside the pixel. As a result, the readout speed and power consumption can be greatly improved as compared to the CPS with column-level discrimination. This work addresses the feasibility study of achieving the signal discrimination withina small pixel (i.e. 22 × 33 µm2), via the prototype named AROM-0. The pixel of AROM-0 contains a sensing diode, a pre-amplifier and an offset compensated discriminator. The noise performance of the various pixel versions implemented in AROM-0 was evaluated. The study was further pursued with the AROM-1 prototypes, incorporating the optimized pixel designs and the necessary on-chip intelligence to approach the final sensor we have proposed for the ALICE-ITS upgrade. This thesis presents in detail the design and the measurement results of these AROM sensors.
Identifer | oai:union.ndltd.org:theses.fr/2015STRAE026 |
Date | 25 September 2015 |
Creators | Wang, Tianyang |
Contributors | Strasbourg, Hu, Yann |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0019 seconds