The ferro-, pyro- and piezoelectric properties of poly(vinylidene fluoride-co-trifluoroethylene) P(VDF-TrFE) have created interest with regard to its application in aqueous and ambient surroundings for sensors, functional coatings, and in the field of life sciences. P(VDF-TrFE) thin films are usually applied via spin-coating, but dip-coating will be advantageous especially for irregularly shaped substrates. The morphology of dip- and spin-coated semi-crystalline thin films is studied as a function of both the film thickness and the annealing temperature. The characterization of the films is carried out by grazing incidence wide-angle X-ray scattering (GIWAXS), X-ray reflectometry (XRR), and infrared reflection absorption spectroscopy (IRRAS). Atomic force microscopy measurements (AFM) are used to examine the resulting topography. It is found that both spin- and dip-coated thin films crystallize in the desired edge-on orientation, but the overall crystallinity after dip-coating is decreased compared to the spin-coated films of comparable thickness and the resulting roughness is increased. The higher roughness is most probably caused by the slower evaporation of the solvents and a secondary crystallization process at the air-polymer interface.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:88336 |
Date | 02 February 2024 |
Creators | Apelt, Sabine, Höhne, Susanne, Mehner, Erik, Böhm, Carolin, Malanin, Mikhail, Eichhorn, Klaus-Jochen, Jehnichen, Dieter, Uhlmann, Petra, Bergmann, Ute |
Publisher | Wiley-VCH GmbH |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | English |
Detected Language | English |
Type | info:eu-repo/semantics/publishedVersion, doc-type:article, info:eu-repo/semantics/article, doc-type:Text |
Rights | info:eu-repo/semantics/openAccess |
Relation | 1439-2054, 2200296, 10.1002/mame.202200296, info:eu-repo/grantAgreement/Bundesministerium für Bildung und Forschung/Materialforschung für die Energiewende/03SF0475A/ |
Page generated in 0.002 seconds