This thesis describes the use of NetFlow data in the systems for detection of disruptions or anomalies in computer network traffic. Various methods for network data collection are described, focusing especially on the NetFlow protocol. Further, various methods for anomaly detection in network traffic are discussed and evaluated, and their advantages as well as disadvantages are listed. Based on this analysis one method is chosen. Further, test data set is analyzed using the method. Algorithm for real-time network traffic anomaly detection is designed based on the analysis outcomes. This method was chosen mainly because it enables detection of anomalies even in an unlabelled network traffic. The last part of the thesis describes implementation of the algorithm, as well as experiments performed using the resulting application on real NetFlow data.
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:235461 |
Date | January 2013 |
Creators | Czudek, Marek |
Contributors | Bartoš, Václav, Kořenek, Jan |
Publisher | Vysoké učení technické v Brně. Fakulta informačních technologií |
Source Sets | Czech ETDs |
Language | Czech |
Detected Language | English |
Type | info:eu-repo/semantics/masterThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0019 seconds