Return to search

Transformer-Based Networks for Fault Detection and Diagnostics of Rotating Machinery

Machine health and condition monitoring are billion-dollar concerns for industry. Quality control and continuous improvement are some of the most important factors for manufacturers to consider in order to maintain a successful business. When work floor interruptions occur, engineers frequently employ “Band-Aid” fixes due to resource, timing, or technical constraints without solving for the root cause. Thus, a need for quick, reliable, and accurate fault detection and diagnosis methods are required.
Within complex rotating machinery, a fundamental component that accounts for large amounts of downtime and failure involves a very basic yet crucial element, the rolling-element bearing. A worn-out bearing constitutes to some of the most drastic failures in any mechanical system next to electrical failures associated with stator windings. The cyclical motion provides a way for measurements to be taken via vibration sensors and analyzed through signal processing techniques. Methods will be discussed to transform these acquired signals into usable input data for neural network training in order to classify the type of fault that is present within the system.
With the wide-spread utilization and adoption of neural networks, we turn our attention to the growing field of sequence-to-sequence deep learning architectures. Language based models have since been adapted to a multitude of tasks outside of text translation and word prediction. We now see powerful Transformers being used to accomplish generative modeling, computer vision, and anomaly detection -- spanning across all industries.
This research aims to determine the efficacy of the Transformer neural network for use in the detection and classification of faults within 3-phase induction motors for the automotive industry. We require a quick turnaround, often leading to small datasets in which methods such as data augmentation will be employed to improve the training process of our time-series signals. / Thesis / Master of Applied Science (MASc)

Identiferoai:union.ndltd.org:mcmaster.ca/oai:macsphere.mcmaster.ca:11375/30313
Date January 2024
CreatorsWong, Jonathan
ContributorsHabibi, Saeid, Mechanical Engineering
Source SetsMcMaster University
Languageen_US
Detected LanguageEnglish
TypeThesis

Page generated in 0.0023 seconds