In the modern world of technology, highly sophisticated electronic systems pave the way for future's information technology breakthroughs. However, rapid growth on complexity and functions in such systems has also been a harbinger for the power increase. Power management techniques have thus been introduced to mitigate this urgent power crisis. Switching power converters are considered to be the best candidate due to their high efficiency and voltage conversion flexibility. Moreover, switching power converter systems are highly nonlinear, discontinuous in time, and variable. This makes it viable over a wide operating range, under various load and line disturbances. However, only one control scheme cannot optimize the whole system in different scenarios. Hybrid control schemes are thus employed in the power converters to operate jointly and seamlessly for performance optimization during start-up, steady state and dynamic voltage/load transient state.In this dissertation, three switching power converter topologies, along with different hybrid control schemes are studied. First, an integrated switching buck converter with a dual-mode control scheme is proposed. A pulse-train (PT) control, employing a combination of four pulse control patterns, is proposed to achieve optimal regulation performance. Meanwhile, a high-frequency pulse-width modulation (PWM) control is adopted to ensure low output ripples and avoid digital limit cycling. Second, an integrated buck-boost converter with a tri-mode digital control is presented. It employs adaptive step-up/down voltage conversion to enable a wide range of output voltage. This is beneficial to ever-increasing dynamic voltage scaling (DVS) enabled, modern power-efficient VLSI systems. DVS adaptively adjusts the supply voltage and operation frequency according to instantaneous power and performance demand, such that a system is constantly operated at the lowest possible power level without compromising its performance. Third, a digital integrated single-inductor multiple-output (SIMO) converter, tailored for DVS-enabled multicore systems is addressed. With a multi-mode control algorithm, DVS tracking speed and line/load regulation are significantly improved, while the converter still retains low cross regulation.All three integrated CMOS DC-DC converters have been designed and fabricated successfully, demonstrating the techniques proposed in this research. The measurements results illustrate superior line and load regulation performances and dynamic response in all these designs.
Identifer | oai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/193904 |
Date | January 2009 |
Creators | Luo, Feng |
Contributors | Ma, Dongsheng, Lysecky, Roman, Lysecky, Susan, Atwell, Bob |
Publisher | The University of Arizona. |
Source Sets | University of Arizona |
Language | English |
Detected Language | English |
Type | text, Electronic Dissertation |
Rights | Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. |
Page generated in 0.0022 seconds