Master of Science / Department of Physics / Kristan L. Corwin / We investigate the nonlinear spectroscopy of acetylene in the near infrared region inside a photonic band gap fiber. The near infrared region of the optical spectrum is an area of intensive research due to its relevance to telecommunication and optical metrology. Acetylene provides a large number of reference transitions coincident with the international telecommunication band. Acetylene contains about 50 strong lines between 1510 nm and 1540 nm in the ν1+ν3 ro-vibrational combination band. We have observed the Doppler-free saturated spectrum of several of these lines. The light from a tunable diode laser at ~1531 nm, resonant with the P(11) transition, is amplified by an erbium doped fiber amplifier and split into a strong pump beam and weak probe beam which counter-propagate inside the gas-filled fiber. The measured Doppler linewidth of the P(11) line at room temperature is about 467 MHz wide. The sub-Doppler profile over a pressure range of 200-1600 mT appears as a narrow absorption feature about 20-40 MHz wide, even at the low pump power of ~10 mW. It is found that for a fiber with an 80 cm length, 20 core size, pumped with 29 mw, the optimum pressure is ~530mT. But the optimum pressure condition will further decrease when the fiber length increases.
Identifer | oai:union.ndltd.org:KSU/oai:krex.k-state.edu:2097/133 |
Date | January 1900 |
Creators | Thapa, Rajesh |
Publisher | Kansas State University |
Source Sets | K-State Research Exchange |
Language | en_US |
Detected Language | English |
Type | Report |
Format | 856559 bytes, application/pdf |
Page generated in 0.0019 seconds