More than 1100 debris flows were mobilized from shallow landslides during a rainstorm from 9 to 13 September 2013 in the Colorado Front Range, with the vast majority initiating on sparsely vegetated, south facing terrain. To investigate the physical processes responsible for the observed aspect control, we made measurements of soil properties on a densely forested north facing hillslope and a grassland-dominated south facing hillslope in the Colorado Front Range and performed numerical modeling of transient changes in soil pore water pressure throughout the rainstorm. Using the numerical model, we quantitatively assessed interactions among vegetation, rainfall interception, subsurface hydrology, and slope stability. Results suggest that apparent cohesion supplied by roots was responsible for the observed connection between debris flow initiation and slope aspect. Results suggest that future climate-driven modifications to forest structure could substantially influence landslide hazards throughout the Front Range and similar water-limited environments where vegetation communities may be more susceptible to small variations in climate.
Identifer | oai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/621986 |
Date | 16 September 2016 |
Creators | McGuire, Luke A., Rengers, Francis K., Kean, Jason W., Coe, Jeffrey A., Mirus, Benjamin B., Baum, Rex L., Godt, Jonathan W. |
Contributors | Univ Arizona, Dept Geosci, U.S. Geological Survey; Denver Colorado USA, U.S. Geological Survey; Denver Colorado USA, U.S. Geological Survey; Denver Colorado USA, U.S. Geological Survey; Denver Colorado USA, U.S. Geological Survey; Denver Colorado USA, U.S. Geological Survey; Denver Colorado USA, U.S. Geological Survey; Denver Colorado USA |
Publisher | AMER GEOPHYSICAL UNION |
Source Sets | University of Arizona |
Language | English |
Detected Language | English |
Type | Article |
Rights | ©2016. American Geophysical Union. All Rights Reserved. |
Relation | http://doi.wiley.com/10.1002/2016GL070741 |
Page generated in 0.0279 seconds