Neste trabalho apresentamos uma demonstração detalhada para um conhecido teorema de I. J. Schoenberg que caracteriza certas funções positivas definidas em esferas. Analisamos ainda um critério para a obtenção de positividade definida de uma função a partir de condições de suavidade e convexidade dela, em uma tentativa de ratificar alguns resultados da literatura conhecidos como critérios de Pólya. / In this work we present a proof for a famous theorem of Schoenberg on positive definite functions on spheres. We analyze some results that deduce positive definiteness from diferentiability and convexity assumption on the function, an attempt to ratify some Pólya type conjectures found in the literature.
Identifer | oai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-27112015-102004 |
Date | 31 March 2015 |
Creators | Jean Carlo Guella |
Contributors | Valdir Antonio Menegatto, Dimitar Kolev Dimitrov, Sergio Antonio Tozoni |
Publisher | Universidade de São Paulo, Matemática, USP, BR |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Source | reponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0017 seconds