Le bruit de chatoiement (speckle) lié aux systèmes d'imagerie cohérente a des conséquences sur l'analyse et l'interprétation des images radar à synthèse d'ouverture (RSO). Pour corriger ce défaut, nous profitons de séries temporelles d'images RSO bien recalées. Nous améliorons le filtre adaptatif temporel non-local à l'aide de méthodes performantes de débruitage adaptatif et proposons un filtrage temporel adaptatif basé sur les patchs. Pour réduire le biais du débruitage, nous proposons une méthode originale, rapide et efficace de débruitage multitemporel. L'idée principale de l'approche proposée est d'utiliser l'image dite "de ratio", donnée par le rapport entre l'image et la moyenne temporelle de la pile. Cette image de ratio est plus facile à débruiter qu'une image isolée en raison de sa meilleure stationnarité. Par ailleurs, les structures fines stables dans le temps sont bien préservées grâce au moyennage multitemporel. Disposant d'images débruitées, nous proposons ensuite d'utiliser la méthode du rapport de vraisemblance généralisé simplifié pour détecter les zones de changement ainsi que l'amplitude des changements et les instants de changements intéressants dans de longues séries d'images correctement recalées. En utilisant le partitionnement spectral, on applique le rapport de vraisemblance généralisé simplifié pour caractériser les changements des séries temporelles. Nous visualisons les résultats de détection en utilisant l'échelle de couleur 'jet' et une colorisation HSV. Ces méthodes ont été appliquées avec succès pour étudier des zones cultivées, des zones urbaines, des régions portuaires et des changements dus à des inondations. / The inherent speckle which is attached to any coherent imaging system affects the analysis and interpretation of synthetic aperture radar (SAR) images. To take advantage of well-registered multi-temporal SAR images, we improve the adaptive nonlocal temporal filter with state-of-the-art adaptive denoising methods and propose a patch based adaptive temporal filter. To address the bias problem of the denoising results, we propose a fast and efficient multitemporal despeckling method. The key idea of the proposed approach is the use of the ratio image, provided by the ratio between an image and the temporal mean of the stack. This ratio image is easier to denoise than a single image thanks to its improved stationarity. Besides, temporally stable thin structures are well-preserved thanks to the multi-temporal mean. Without reference image, we propose to use a patch-based auto-covariance residual evaluation method to examine the residual image and look for possible remaining structural contents. With speckle reduction images, we propose to use simplified generalized likelihood ratio method to detect the change area, change magnitude and change times in long series of well-registered images. Based on spectral clustering, we apply the simplified generalized likelihood ratio to detect the time series change types. Then, jet colormap and HSV colorization may be used to vividly visualize the detection results. These methods have been successfully applied to monitor farmland area, urban area, harbor region, and flooding area changes.
Identifer | oai:union.ndltd.org:theses.fr/2019SACLT003 |
Date | 21 January 2019 |
Creators | Zhao, Weiying |
Contributors | Université Paris-Saclay (ComUE), Tupin, Florence |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.003 seconds