New neurons continue to be added to the dentate gyrus (DG) throughout adulthood and enhancing neurogenesis in this region holds therapeutic potential. However, the molecular mechanisms underlying DG neurogenesis remain elusive. Since developmental and adult neurogenesis often share the same signaling pathways, understanding how the DG develops is crucial to understanding adult neurogenesis. This study aims to determine the role of the retinoblastoma (Rb) protein in DG development and to determine if modulation of this pathway holds potential for enhancing neurogenesis in an adult system. A FoxG1 driven Cre is used to delete Rb in the developing forebrain and the resulting effects are analyzed in in vitro and in vivo mouse models. We show that Rb deletion enhances DG neurogenesis by specifically increasing proliferation of immature neurons. Overall this study suggests that Rb pathway modulation could hold potential for enhancing neurogenesis in the adult.
Identifer | oai:union.ndltd.org:uottawa.ca/oai:ruor.uottawa.ca:10393/23742 |
Date | January 2013 |
Creators | Clark, Alysen |
Contributors | Slack, Ruth |
Publisher | Université d'Ottawa / University of Ottawa |
Source Sets | Université d’Ottawa |
Language | English |
Detected Language | English |
Type | Thesis |
Page generated in 0.0021 seconds