Les travaux présentés dans cette thèse relèvent principalement de la réactivité des surfaces et des interactions gaz-surface. Les champs d'application de ce travail sont variés et s'inscrivent principalement dans le domaine de la fusion nucléaire et du projet ITER.Dans ce cadre, la modélisation à l'échelle atomique est un outil important pour comprendre et interpréter les résultats expérimentaux. Notre domaine de compétences est celui du calcul de structures électroniques et des propriétés chimiques. Ces calculs sont principalement conduits dans le cadre de la Théorie de la Fonctionnelle de la Densité (DFT) et de la thermodynamique statistique.Bien que composé de six chapitres, ce manuscrit comporte trois parties principales. La première est dédiée à la présentation des méthodes de calculs utilisées tout au long de cette thèse. La deuxième partie est consacrée à l'étude de la formation du carbure de béryllium à partir d'un dépôt de béryllium sur une surface de graphite. Le degré de fiabilité des résultats DFT a été évalué et les principales étapes de la formation de carbure de béryllium ont été déterminées. La troisième partie développée sur deux chapitres est consacrée à l'étude de l'interaction entre l'hydrogène et le tungstène métallique. La dissolution, la diffusion ainsi que le piégeage de l'hydrogène dans le tungstène ont été étudiés. Un excellent accord a été obtenu entre les valeurs calculées et les résultats expérimentaux de référence. / The work herein presented deals with the reactivity of surfaces and the gas–surface interaction. This work is connected to different fields of applied science and more specifically to the field of nuclear materials for fusion devices like the International Thermonuclear Experimental Reactor (ITER).Numerical simulations at the atomic scale can provide an in depth understanding of the mechanisms at the origin of experimental observations. More specifically, our skills are about electronic structure calculations and chemical properties modelling; most of the work we produced has been conducted within the framework of the Density Functional Theory (DFT) and statistical thermodynamics. While made of six chapters, the manuscript can be cast in three main parts. The first one is dedicated to the methods used throughout this thesis. The second is devoted to the formation of beryllium carbide from deposited beryllium atoms on graphite surfaces; the reliability of the DFT results was benchmarked and the main steps of the beryllium carbide formation were determined. The third part explores the interaction between hydrogen and metallic tungsten. The formation of vacancies in the material, its impact on the solubility and diffusion of hydrogen in tungsten were investigated, and the results were compared with experiment; an excellent agreement was found.
Identifer | oai:union.ndltd.org:theses.fr/2015AIXM4715 |
Date | 17 April 2015 |
Creators | Fernandez, Nicolas |
Contributors | Aix-Marseille, Ferro, Yves |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.002 seconds