För varje dag som går möter stora industrier en ökad mängd intrång i sina IT-system. De flesta befintliga verktyg som använder sig utav maskininlärning är starkt beroende av stora mängder data, vilket innebär risker under dataöverföringen. Därför har syftet med denna studie varit att undersöka om en decentraliserad integritetsbevarande strategi kan vara ett bra alternativ för att minska effektiviteten av dessa attacker. Mer specifikt skulle användningen av Random Forests, en av de mest populära algoritmerna för maskininlärning, kunna utökas med decentraliseringstekniken Federated Learning tisammans med Differential Privacy, för att skapa en ideal metod för att upptäcka nätverksintrång? Med hjälp av befintliga kodbibliotek för maskininlärnings och verklighetsbaserad data har detta projekt konstruerat olika modeller för att simulera hur väl olika decentraliserade och integritetsbevarande modeller kan jämföras med traditionella alternativ. De skapade modellerna innehåller antingen Federated Learning, Differential Privacy eller en kombination av båda. Huvuduppgiften för dessa modeller är att förbättra integriteten och samtidigt minimera minskningen av precision. Resultaten indikerar att båda teknikerna kommer med en liten minskning i noggrannhet jämfört med traditionella alternativ. Huruvida precisionsförlusten är acceptabel eller beror på det specifika användningsområdet. Det utvecklade kombinerade alternativet lyckades dock inte nå acceptabel precision vilket hindrar oss från att dra några slutsatser. / With each passing day, large industries face an increasing amount of intrusions into their IT environments. Most existing machine learning countermeasures heavily rely on large amounts of data which introduces risk during the data-transmission. Therefore, the objective of this study has been to investigate whether a decentralized privacy-preserving approach could be a sensible alternative to decrease the effectiveness of these attacks. More specifically could the use of Random Forests, one of the most popular machine learning algorithms, be extended using the decentralization technique Federated Learning in cooperation with Differential Privacy, in order to create an ideal approach for network intrusion detection? With the assistance of existing machine learning code-libraries and real-life data, this thesis has constructed various experimental models to simulates how well different decentralized and privacy-preserving approaches compare to traditional ones. The models created incorporate either Federated Learning, Differential Privacy or a combination of both. The main task of these models is to enhance privacy while minimizing the decrease in accuracy. The results indicate that both techniques comes with a small decrease in accuracy compared to traditional alternatives. whether the accuracy loss is acceptable or not may depend on the specific scenario. The developed combined approach however, failed to reach acceptable accuracy which prevents us from drawing any conclusions.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:miun-48599 |
Date | January 2023 |
Creators | Frid, Alexander |
Publisher | Mittuniversitetet, Institutionen för data- och elektroteknik (2023-) |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0028 seconds