Return to search

Modélisation de la combustion turbulente diphasique par une approche eulérienne-lagrangienne avec prise en compte des phénomènes transitoires / Two-phase flows turbulent combustion modelling based on an eulerian-lagrangian approach including transient effects

L'allumage d'ergols injectés dans une chambre de combustion, la propagation du noyau de flamme puis sa stabilisation sont autant de paramètres déterminants pour la conception d'un moteur fusée. Pour ce type d'application, il est nécessaire - du point de vue de la modélisation - de tenir compte du couplage existant entre les effets de compressibilité, les processus de mélange turbulent ainsi que de cinétique chimique, dans un environnement diphasique puisque les ergols sont injectés à l'état liquide. Un modèle Lagrangien a été implanté dans le code de calcul compressible N3S-Natur afin de disposer d'un outil numérique capable de simuler le transitoire d'allumage d'un moteur fusée. La physique représentative de chacun des processus physiques impliqués pendant la phase d'allumage a été incorporée puis validée sur des configurations académiques. Ce travail a permis de mettre en évidence l'importance de la description du mélange à petites échelles pour capturer correctement le développement de la flamme. Il a aussi mis en exergue la nécessité de prendre en compte le transitoire thermique des gouttes d'oxygène liquide afin de reproduire fidèlement sa stabilisation. Enfin, il a nécessité l'extension de la notion de fraction de mélange à des cas pratiques présentant plus de deux entrées afin d'être en mesure de simuler la propagation de l'allumage sur la plaque d'injection. Cette approche basée sur l'introduction d'un injecteur fictif est non seulement utile pour la simulation de l'allumage des moteurs-fusées mais peut aussi être employée dans tout autre système impliquant le mélange entre des courants de réactifs issus de deux entrées ou plus. / In the field of liquid rocket propulsion, ignition, propagation and stabilization of the flame are of first importance for the design of the engine. Computational fluid dynamics (CFD) solvers may provide a great deal of help to proceed with the primary design choice but need to be fed with suited physical models. Important modelling efforts are therefore required to provide reliable computational representations able to take into account compressibility effects, turbulent mixing and chemical kinetics in two-phase flows since ergols are injected at the liquid state. A Lagrangian model has been implemented in the compressible solver N3S-Natur so as to obtain a computational tool able to compute the transient ignition of rocket engines. The physical processes involved at each step of this ignition sequence have been integrated and validated on academically configurations. Three significant contributions rose from this work. First of all, it is highlighted that the description of the micro-mixing is of first importance to correctly capture the flame development. This study also emphasized the need to consider the transient heating of liquid oxygen droplets in order to accurately compute the flame stabilization. Finally, the notion of mixture fraction must be extended to practical devices implying more than two inlets. The proposed approach which is based on the introduction of a fictive injector is not only well suited to rocket engine ignition application but also to deal with other practical devices implying two inlets and more.

Identiferoai:union.ndltd.org:theses.fr/2013ESMA0022
Date04 December 2013
CreatorsGomet, Laurent
ContributorsChasseneuil-du-Poitou, Ecole nationale supérieure de mécanique et d'aérotechnique, Mura, Arnaud, Robin, Vincent
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0065 seconds