Return to search

Load-following heat, hot water and power distributed generation using an integrated solid oxide fuel cell, compressed air energy storage and solar panel array system.

Distributed generation (defined as the production of power in small quantities at the point of use) has recently gained significant interest due to its benefits over a centralized approach. This thesis investigates the integration of a natural gas fed solid-oxide fuel cell (SOFC) and compressed air energy storage (CAES) technologies for distributed generation at the building-level scale. The SOFC/CAES system is also integrated with multiple vital sub-systems (including on-site solar panels) for the building to provide the heat, through an in-floor heating system, hot water, and power demanded by the building. This thesis investigates the models for the SOFC/CAES system, and implements them in a generic analysis tool providing a means for rapid analysis of a wide variety of case studies. The analysis tool determines the ability of the SOFC/CAES system to follow the power and heat loads demanded by the building, and evaluates its performance with an assortment of metrics, including efficiencies, CO2 emissions and grid-independence. The SOFC/CAES system was investigated for the new ExCEL building at McMaster University. It was found that the system was able to produce upwards 75% of the heat and hot water demand, and upwards of 94% of the power demand of the building. When compared to the current state-of-the-art natural gas based power producing technology and high efficiency furnace, the SOFC/CAES system reduces the CO2 emissions associated with the building by a minimum of 8.7% and a maximum of 26.95%. The cost of electricity for the system is significantly (21% to 150%) more costly than current market prices; however the SOFC/CAES system is the least costly of all other distributed generation technologies investigated for the case of the ExCEL building. / Thesis / Master of Applied Science (MASc)

Identiferoai:union.ndltd.org:mcmaster.ca/oai:macsphere.mcmaster.ca:11375/17202
Date06 1900
CreatorsLefebvre, Kyle
ContributorsAdams II, Thomas, Chemical Engineering
Source SetsMcMaster University
LanguageEnglish
Detected LanguageEnglish
TypeThesis

Page generated in 0.0069 seconds