Return to search

The effect of porosity distribution on the predicted mechanical response of die cast AM60B magnesium

In this paper, it is clearly shown that the distribution of the initial porosity is a critical factor in the prediction of damage evolution and initiation of failure in a cast AM60B magnesium notch Bridgeman tensile specimen. Using X-ray computed tomography, the actual initial porosity distribution was obtained, and this distribution was input into a finite element code as an initial condition. The predicted damage evolution from this simulation was compared to the damage evolution of the experimental specimen as well as other simulated porosity distributions. This study shows that the simulation of the actual porosity distribution predicted well the damage evolution observed in the experiment. It is also shown that the initial distribution of porosity plays a vital role in the predicted elongation to failure of a notched specimen. The actual distribution was shown to fail at a significantly lower strain than random or uniformly distributed damage.

Identiferoai:union.ndltd.org:MSSTATE/oai:scholarsjunction.msstate.edu:td-5366
Date07 August 2010
CreatorsHardin, David Barrett
PublisherScholars Junction
Source SetsMississippi State University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceTheses and Dissertations

Page generated in 0.012 seconds