Return to search

The behavior of RAD51D and XRCC2 in response to drug induced DNA damage and a continuing study of the fly RAD51 paralogs

Repair of DNA damage is one of the most important processes undergone in a dividing cell. This is a two-part study undertaken to better understand some of the proteins involved in the sensing and repair of DNA damage in Drosophila melanogaster. The first portion of this experiment followed two Drosophila Rad51 paralogs, dmRad51D and dmXRRC2, and using constructs tagged with GFP, found that they entered the nucleus in response to drug induced DNA damage. Approximately one hour after the induction of DNA damage via bleomycin, dmRad51D and dmXRCC2 entered the nucleus of the Drosophila culture cells, where they remained for the next three to four hours. Following this period in the nucleus, the cells were visualized moving back into the cytosol. The second portion of this experiment was concerned with the four Drosophila Rad51 paralogs (dmRad51 D, dmXRCC2, Spn B, and Spn D) and two paralogs from Homo sapiens (hsRad51 D and dmRad51 D) and their interactions.

Identiferoai:union.ndltd.org:pacific.edu/oai:scholarlycommons.pacific.edu:uop_etds-1763
Date01 January 2011
CreatorsVan Laar, Tricia A.
PublisherScholarly Commons
Source SetsUniversity of the Pacific
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceUniversity of the Pacific Theses and Dissertations

Page generated in 0.0015 seconds