Return to search

Large scale simulations of genome organisation in living cells

Within every human cell, approximately two meters of DNA must be compacted into a nucleus with a diameter of around ten micrometers. Alongside this daunting storage problem, the 3D organisation of the genome also helps determine which genes are up- or down-regulated, which in turn effects the functionality of the cell itself. While the organisational structure of the genome can be revealed using experimental techniques such as chromosome conformation capture and its high-throughput variant Hi-C, the mechanisms driving this organisation are still unclear. The first two results chapters of this thesis use molecular dynamics simulations to investigate the effect of a potential organisational mechanisms for DNA known as the "bridging-induced attraction". This mechanism involves multivalent DNA-binding proteins bridging genomically distant regions of DNA, which in turn promotes further binding of proteins and compaction of the DNA. In chapter 2 (the first results chapter) we look at a model where proteins can bind non-specifically to DNA, leading to cluster formation for suitable protein-DNA interaction strengths. We also show the effects of protein concentration on the DNA, with a collapse from a swollen to a globular phase observed for suitably high protein concentrations. Chapter 3 develops this model further, using genomic data from the ENCODE project to simulate the "specific binding" of proteins to either active (euchromatin) or inactive (heterochromatin) regions. We were then able to compare contact maps for specific simulated chromosomes with the experimental Hi-C data, with our model reproducing well the topologically associated domains (TADs) seen in Hi-C contact maps. In chapter 4 of the thesis we use numerical methods to study a model for the coupling between DNA topology (in particular, supercoiling in DNA and chromatin) and transcription in a genome. We present details of this model, where supercoiling flux is induced by gene transcription, and can diffuse along the DNA. The probability of transcription is also related to supercoiling, as regions of DNA which are negatively supercoiled have a greater likelihood of being transcribed. By changing the magnitude of supercoiling flux, we see a transition between a regime where transcription is random and a regime where transcription is highly correlated. We also find that divergent gene pairs show increased transcriptional activity, along with transcriptional waves and bursts in the highly correlated regime { all these features are associated with genomes of living organisms.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:756507
Date January 2018
CreatorsJohnson, James
ContributorsMarenduzzo, Davide ; Cates, Michael
PublisherUniversity of Edinburgh
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://hdl.handle.net/1842/31206

Page generated in 0.0071 seconds