Return to search

FAAP100, der FA/BRCA-Signalweg für genomische Stabilität und das DNA-Reparatur-Netzwerk / FAAP100, the FA/BRCA pathway for genomic stability and the DNA repair network

Die Fanconi-Anämie (FA) ist eine seltene, heterogene Erbkrankheit. Sie weist ein sehr variables klinisches Erscheinungsbild auf, das sich aus angeborenen Fehlbildungen, hämatologischen Funktionsstörungen, einem erhöhten Risiko für Tumorentwicklung und endokrinen Pathologien zusammensetzt. Die Erkrankung zählt zu den genomischen Instabilitätssyndromen, welche durch eine fehlerhafte DNA-Schadensreparatur gekennzeichnet sind. Bei der FA zeigt sich dies vor allem in einer charakteristischen Hypersensitivität gegenüber DNA-quervernetzenden Substanzen (z. B. Mitomycin C, Cisplatin). Der zelluläre FA-Phänotyp zeichnet sich durch eine erhöhte Chromosomenbrüchigkeit und einen Zellzyklusarrest in der G2-Phase aus. Diese Charakteristika sind bereits spontan vorhanden und werden durch Induktion mit DNA-quervernetzenden Substanzen verstärkt. Der Gendefekt ist dabei in einem der 22 bekannten FA-Gene (FANCA, -B, -C, -D1, -D2, -E, -F, -G, -I, -J, -L, -M, -N, -O, -P, -Q, -R, -S, -T, -U, -V, -W) oder in noch unbekannten FA-Genen zu finden. Die FA-Gendefekte werden mit Ausnahme von FANCR (dominant-negative de novo Mutationen) und FANCB (X-chromosomal) autosomal rezessiv vererbt. Die FA-Genprodukte bilden zusammen mit weiteren Proteinen den FA/BRCA-Signalweg. Das Schlüsselereignis dieses Signalwegs stellt die Monoubiquitinierung von FANCD2 und FANCI (ID2-Komplex) dar. Ausgehend davon lässt sich zwischen upstream- und downstream-gelegenen FA-Proteinen unterscheiden. Letztere sind direkt an der DNA-Schadensreparatur beteiligt. Zu den upstream-gelegenen Proteinen zählt der FA-Kernkomplex, der sich aus bekannten FA-Proteinen und aus FA-assoziierten-Proteinen (FAAPs) zusammensetzt und für die Monoubiquitinierung des ID2-Komplexes verantwortlich ist. Für FAAPs wurden bisher keine pathogenen humanen Mutationen beschrieben. Zu diesen Proteinen gehört auch FAAP100, das mit FANCB und FANCL innerhalb des FA-Kernkomplexes den Subkomplex LBP100 bildet.
Durch die vorliegende Arbeit wurde eine nähere Charakterisierung dieses Proteins erreicht. In einer Amnion-Zelllinie konnte eine homozygote Missense-Mutation identifiziert werden. Der Fetus zeigte einen typischen FA-Phänotyp und auch seine Zellen wiesen charakteristische FA-Merkmale auf. Der zelluläre Phänotyp ließ sich durch FAAP100WT komplementieren, sodass die Pathogenität der Mutation bewiesen war. Unterstützend dazu wurden mithilfe des CRISPR/Cas9-Systems weitere FAAP100-defiziente Zelllinien generiert. Diese zeigten ebenfalls einen typischen FA-Phänotyp, welcher sich durch FAAP100WT komplementieren ließ. Die in vitro-Modelle dienten als Grundlage dafür, die Funktion des FA-Kernkomplexes im Allgemeinen und die des Subkomplexes LBP100 im Besonderen besser zu verstehen. Dabei kann nur durch intaktes FAAP100 das LBP100-Modul gebildet und dieses an die DNA-Schadensstelle transportiert werden. Dort leistet FAAP100 einen essentiellen Beitrag für den FANCD2-Monoubiquitinierungsprozess und somit für die Aktivierung der FA-abhängigen DNA-Schadensreparatur. Um die Funktion von FAAP100 auch in vivo zu untersuchen, wurde ein Faap100-/--Mausmodell generiert, das einen mit anderen FA-Mausmodellen vergleichbaren, relativ schweren FA-Phänotyp aufwies. Aufgrund der Ergebnisse lässt sich FAAP100 als neues FA-Gen klassifizieren. Zudem wurde die Rolle des Subkomplexes LBP100 innerhalb des FA-Kernkomplexes weiter aufgeklärt. Beides trägt zu einem besseren Verständnis des FA/BRCA-Signalweges bei. Ein weiterer Teil der vorliegenden Arbeit beschäftigt sich mit der Charakterisierung von FAAP100138, einer bisher nicht validierten Isoform von FAAP100. Durch dieses Protein konnte der zelluläre FA-Phänotyp von FAAP100-defizienten Zelllinien nicht komplementiert werden, jedoch wurden Hinweise auf einen dominant-negativen Effekt von FAAP100138 auf den FA/BRCA-Signalweg gefunden. Dies könnte zu der Erklärung beitragen, warum und wie der Signalweg, beispielsweise in bestimmtem Gewebearten, herunterreguliert wird. Zudem wäre eine Verwendung in der Krebstherapie denkbar. / Fanconi Anemia (FA) is a rare heterogeneous hereditary disease. It shows a highly variable clinical presentation including congenital malformations, bone marrow failure and increased risk for cancer and endocrine pathologies. The disease is classified as one of the genomic instability disorders that are characterized by failure of DNA damage repair processes. FA shows a typical hypersensitivity toward DNA crosslinking agents (e.g. Mitomycin C, cisplatin). There is an increased rate of chromosomal breakage and cell cycle arrest in the G2 phase. These characteristics are present spontaneously and after incubation with DNA crosslinking agents. The genetic defect can be found in one of the 22 reported FA genes (FANCA, -B, -C, -D1, -D2, -E, -F, -G, -I, -J, -L, -M, -N, -O, -P, -Q, -R, -S, -T, -U, -V, -W) or yet unknown FA genes. FA gene defects are inherited in an autosomal recessive way with the exceptions of FANCR (dominant negative de novo mutations) and FANCB (X-linked). Together with other proteins, the FA gene products establish the FA/BRCA pathway. The key event of this pathway is the monoubiquitination of FANCD2 and FANCI (ID2 complex). From this point it is possible to differentiate between upstream and downstream FA proteins. The latter are directly involved in FA-dependent DNA repair processes. The upstream positioned FA proteins form the FA core complex that includes FA and FA-associated proteins (FAAPs). The FA core complex is responsible for the monoubiquitination of FANCD2 and FANCI. To date no pathogenic human mutations of the FAAPs have been described. Among these proteins is FAAP100 which together with FANCB and FANCL forms the subcomplex LBP100 within the FA core complex.
In the present thesis a closer characterization of this protein has been achieved. In an amniotic cell line a homozygous missense mutation could be identified. The affected fetus displayed a typical FA phenotype and the cells also showed characteristics of FA. The cellular phenotype was complemented by FAAP100WT, thus proving the pathogenicity of the mutation. Supporting this result, additional FAAP100-deficient cell lines have been generated using the CRISPR/Cas9 system. These also exhibited a typical FA cellular phenotype which could be complemented by FAAP100WT. In vitro models served as a basis for better understanding the function of the FA core complex in general and of the LBP100 subcomplex in particular. Only in the presence of an intact FAAP100 the LBP100 module can be formed and transported to sites of DNA interstrand crosslinks. There, FAAP100 significantly contributes to the FANCD2 monoubiquitination process and thus to the activation of FA-dependent DNA damage repair. In order to also examine the function of FAAP100 in vivo, an Faap100-/- mouse model has been generated which shows a relatively severe FA phenotype comparable to other FA mouse models. Because of these results FAAP100 can be categorized as a new FA gene. Moreover, the role of the LBP100 subcomplex within the FA core complex was further elucidated and a better understanding of the FA/BRCA pathway was achieved. Another part of this thesis deals with the characterization of FAAP100138, a hitherto not validated isoform of FAAP100. The cellular FA phenotype of FAAP100-deficient cell lines could not be complemented by this isoform. However, there are clues pointing to a dominant negative effect of FAAP100138 on the FA/BRCA pathway. This finding could serve as a potential explanation of how and why the FA signaling pathway is downregulated in certain tissues. A therapeutic application for cancer of FAAP100138 appears possible.

Identiferoai:union.ndltd.org:uni-wuerzburg.de/oai:opus.bibliothek.uni-wuerzburg.de:17166
Date January 2022
CreatorsKühl, Julia
Source SetsUniversity of Würzburg
Languagedeu
Detected LanguageEnglish
Typedoctoralthesis, doc-type:doctoralThesis
Formatapplication/pdf
Rightshttps://opus.bibliothek.uni-wuerzburg.de/doku/lic_ohne_pod.php, info:eu-repo/semantics/openAccess

Page generated in 0.0023 seconds