<p>Pyrosequencing is a DNA sequencing method based on thedetection of released pyrophosphate (PPi) during DNA synthesis.In a cascade of enzymatic reactions, visible light isgenerated, which is proportional to the number of nucleotidesincorporated into the DNA template. When dNTP(s) areincorporated into the DNA template, inorganic PPi is released.The released PPi is converted to ATP by ATP sulfurylase, whichprovides the energy to luciferase to oxidize luciferin andgenerate light. The excess of dNTP(s) and the ATP produced areremoved by the nucleotide degrading enzyme apyrase.</p><p>The commercially available enzymes, isolated from nativesources, show batch-tobatch variations in activity and quality,which decrease the efficiency of the Pyrosequencing reaction.Therefore, the aim of the research presented in this thesis wasto develop methods to recombinantly produce the enzymes used inthe Pyrosequencing method. Production of the nucleotidedegrading enzyme apyrase by Pichia pastoris expression system,both in small-scale and in an optimized large-scale bioreactor,is described. ATP sulfurylase, the second enzyme in thePyrosequencing reaction, was produced in<i>Escherichia coli</i>. The protein was purified and utilizedin the Pyrosequencing method. Problems associated with enzymecontamination (NDP kinase) and batch-to-batch variations wereeliminated by the use of the recombinant ATP sulfurylase.</p><p>As a first step towards sequencing on chip-format,SSB-(single-strand DNA binding protein)-luciferase and KlenowDNA polymerase-luciferase fusion proteins were generated inorder to immobilize the luciferase onto the DNA template.</p><p>The application field for the Pyrosequencing technology wasexpanded by introduction of a new method for clone checking anda new method for template preparation prior the Pyrosequencingreaction.</p><p><b>Keywords:</b>apyrase, Pyrosequencing technology, Z<sub>basic</sub>tag fusion, luciferase, ATP sulfurylase, dsDNAsequencing, clone checking, Klenow-luciferase, SSB-luciferase,<i>Pichia pastoris, Echerichia coli</i>.</p>
Identifer | oai:union.ndltd.org:UPSALLA/oai:DiVA.org:kth-3765 |
Date | January 2004 |
Creators | Nourizad, Nader |
Publisher | KTH, Biotechnology, Stockholm : Bioteknologi |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Doctoral thesis, comprehensive summary, text |
Page generated in 0.0061 seconds