The poultry-to-human transmission of the influenza virus and the recent H1Nl influenza pandemic have become major concerns worldwide. The nucleoprotein (NP) of influenza virus binds the RNA genome and plays essential role in transcription and replication during the virus life cycle. / The study leads to a better understanding towards the RNP organization of influenza virus and provides information for the future design of anti-influenza agents. / We have also shown, by RNP reconstitution assay and co-immunoprecipitation, that the interaction between NP and PB2 is crucial for the proper functioning of the RNP. The functional association of NP and PB2 requires either the PB2 host-determining residue lysine-627 or arginine-630 with the latter involving NP arginine-150 also. Using SPR, we have demonstrated that both residues take part in the direct protein-protein interaction, without the involvement of RNA. These results suggest a dual interaction mechanism between NP and PB2. This may confer replication advantages to the virus, as either one can give an active RNP and explains the increased virulence of avian influenza viruses carrying the E627K mutation in mammalian cells. In addition, our findings identify the NP-PB2 interacting surface, with the PB2 627/630 region facing the RNA binding groove of NP. / We have determined the 3.3 A crystal structure of H5N1 NP, which is composed of head and body domains and a tail loop. Using surface plasmon resonance (SPR), we found the basic loop (residues 73-91) and arginine-rich groove, but mostly a protruding element centering at R174 and R175, to be important in RNA binding. Ribonucleoprotein (RNP) reconstitution assay with these multiple-point and deletion mutants indicate their functional importance towards the transcription-replication activities of the virus polymerase. Single-point mutations at these concerned regions do not have a significant effect on their RNP activities, suggesting that NP mediates RNA-binding through multiple residues. / Ng, Ka Leung. / Adviser: Pang Chui Shaw. / Source: Dissertation Abstracts International, Volume: 73-06, Section: B, page: . / Thesis (Ph.D.)--Chinese University of Hong Kong, 2011. / Includes bibliographical references (leaves 121-136). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Electronic reproduction. [Ann Arbor, MI] : ProQuest Information and Learning, [201-] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstract also in Chinese.
Identifer | oai:union.ndltd.org:cuhk.edu.hk/oai:cuhk-dr:cuhk_344851 |
Date | January 2011 |
Contributors | Ng, Ka Leung., Chinese University of Hong Kong Graduate School. Division of Life Sciences. |
Source Sets | The Chinese University of Hong Kong |
Language | English, Chinese |
Detected Language | English |
Type | Text, theses |
Format | electronic resource, microform, microfiche, 1 online resource (x, 136 leaves : ill. (some col.)) |
Rights | Use of this resource is governed by the terms and conditions of the Creative Commons “Attribution-NonCommercial-NoDerivatives 4.0 International” License (http://creativecommons.org/licenses/by-nc-nd/4.0/) |
Page generated in 0.0017 seconds