DNA-Netzwerke können als formgebende Muster (Template) zur Funktionalisierung technischer Oberflächen für die bottom-up Materialsynthese Verwendung finden. Zum Aufbau solcher Netzwerke werden synthetisch hergestellte DNA-Oligonukleotide hybridisiert. Im ersten Teil der Arbeit wird ein Weg beschrieben, wie die zum gezielten Aufbau einer vorgegebenen Struktur notwendigen DNA-Oligonukleotide hergeleitet werden können. Dies geschieht über eine schrittweise Zerlegung der Struktur in Bausteine, welche wiederum in die Oligonukleotide zerlegt werden. Weiterhin werden verschiedene DNA-Strukturen und Netzwerke hergestellt, welche mittels Gelelektrophorese, Atomkraft-, Elektronen- und Fluoreszensmikroskopie charakterisiert werden. Es wird gezeigt, wie die Herstellung von im Fluoreszensmikroskop beobachtbaren DNA-Verzweigungen möglich ist. Die Bildung von röhrenartigen Strukturen, welche sich mit der Zeit in zweidimensionale Netzwerke umlagern, wird anhand eines Modells zu Keimbildung und Keimwachstum erklärt. Für die gezielte Zusammenlagerung einer bestimmten Anzahl von Bausteinen werden mehrere Varianten untersucht. Bei den einzelnen Varianten sind große Unterschiede in der Steifigkeit feststellbar. Es werden Untersuchungen zum Einbau gebogener Abschnitte in DNA-Netzwerke durchgeführt. Dabei wird insbesondere auf Gestaltung der gebogenen Abschnitte zur Vermeidung von Fehlpaarungen eingegangen. Untersuchungen zur Metallisierung von Netzwerken zeigen, dass zur Beibehaltung der Struktur eine erhöhte Stabilität notwendig ist.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:23842 |
Date | 20 February 2009 |
Creators | Huhle, Alexander |
Contributors | Pompe, Wolfgang, Mertig, Michael, Kremer, Friedrich |
Publisher | Technische Universität Dresden |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | German |
Detected Language | German |
Type | doc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0018 seconds