Return to search

Systematic characterization of Rab GTPase cell type expression and subcellular localization in Drosophila melanogaster

The Rab family of small GTPases orchestrates intracellular endomembrane transport through the recruitment of diverse effector proteins. Since its first discovery in 1987, almost 70 Rab proteins have been identified in humans to date and their perturbed function is implicated in several hereditary and acquired diseases.

In this Ph.D. thesis, I systematically characterize cell type expression and subcellular localization of all Rab proteins present in Drosophila melanogaster utilizing a genetic resource that represents a major advance for studying membrane trafficking in vivo: the ’Drosophila YRab library’. This collection comprises 27 different D. melanogaster knock-in lines that harbor YFPMyc fusions to each Rab protein, referred to as YRab.

For each YRab, I present a comprehensive data set of quantitative and qualitative expression profiles across six larval and adult tissues that include 23 annotated cell types. The whole image data set, along with its annotations, is publicly accessible through the FLYtRAB database that links to CATMAID for online browsing of tissues.

I exploit this data set to address basic cell biological questions. i) How do differentiating cells reorganize their transport machinery to perform cell type-specific functions? My data indicates that qualitative and quantitative changes in YRab protein expression facilitate the functional specialization of differentiated cells. I show that about half of the YRab complement is ubiquitously expressed across D. melanogaster tissues, while others are missing from some cell types or reflect strongly restricted cell type expression, e.g. in the nervous system. I also depict that relative YRab expression levels change as cells differentiate. ii) Are specific Rab proteins dedicated to apical or basolateral protein transport in all epithelia? My data suggests that the endomembrane architecture reflects specific tasks performed by particular epithelial tissues, rather than a generalized apicobasal organization. I demonstrate that there is no single YRab that is similarly polarized in all epithelia. Rather, different epithelial tissues dynamically polarize the subcellular localization of many YRab compartments, producing membrane trafficking architectures that are tissue- and stage-specific.

I further discuss YRab cell type expression and subcellular localization in the context of Rab family evolution. I report that the conservation of YRab protein expression across D. melanogaster cell types reflects their evolutionary conservation in eukaryotes. In addition, my data supports the assumption that the flexible deployment of an expanded Rab family triggered cell differentiation in metazoans.

The FLYtRAB database and the ’Drosophila Rab Library’ are complementary resources that facilitate functional predictions based on YRab cell type expression and subcellular localization, and to subsequently test them by genetic loss-of-function experiments. I demonstrate the power of this approach by revealing new and redundant functions for Rab23 and Rab35 in wing vein patterning.

My data collectively highlight that in vivo studies of endomembrane transport pathways in different D. melanogaster cell types is a valuable approach to elucidate functions of Rab family proteins and their potential implications for human disease.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa.de:bsz:14-qucosa-165234
Date08 June 2015
CreatorsDunst, Sebastian
ContributorsTechnische Universität Dresden, Fakultät Mathematik und Naturwissenschaften, Ph.D. Suzanne Eaton, Prof. Dr. Christian Dahmann, Prof. Dr. Marino Zerial, Ph.D. Marek Eliáš
PublisherSaechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageEnglish
Typedoc-type:doctoralThesis
Formatapplication/pdf

Page generated in 0.0024 seconds