Return to search

Cost Effective Domination in Graphs

A set S of vertices in a graph G = (V,E) is a dominating set if every vertex in V \ S is adjacent to at least one vertex in S. A vertex v in a dominating set S is said to be it cost effective if it is adjacent to at least as many vertices in V \ S as it is in S. A dominating set S is cost effective if every vertex in S is cost effective. The minimum cardinality of a cost effective dominating set of G is the cost effective domination number of G. In addition to some preliminary results for general graphs, we give lower and upper bounds on the cost effective domination number of trees in terms of their domination number and characterize the trees that achieve the upper bound. We show that every value of the cost effective domination number between these bounds is realizable.

Identiferoai:union.ndltd.org:ETSU/oai:dc.etsu.edu:etd-2678
Date15 December 2012
CreatorsMcCoy, Tabitha Lynn
PublisherDigital Commons @ East Tennessee State University
Source SetsEast Tennessee State University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceElectronic Theses and Dissertations
RightsCopyright by the authors.

Page generated in 0.002 seconds