Emerging influenza viruses continue to challenge public health. The problem is public health science professionals have been battling emerging human influenza diseases with tactile and reactionary methods because there is a lack of knowledge and data at the human-animal interface. This research was a baseline study of the proportion of influenza A virus (IAV) in urban and rural communities in California. The population was artificial recirculating water ponds in the geographic locations of rural and urban Californian communities. Surface water samples [N = 182] were collected from artificial recirculating ponds in California. Positivity for IAV was verified by real time RT-PCR, MDCK cells for virus infectivity, nucleotide sequencing of the RNA genome, and phylogenic analysis of IAV H5N1 strains. The proportion of IAV in rural and urban ponds favored the greater burden of IAV in urban ponds over rural ponds. The presence of waterfowl and IAV M gene sequence positivity were found not to be significantly related. The geochemical properties--pH, salinity, and water temperature at time of collection--were not predictors of IAV infectivity. This baseline research study validated these water ponds as resource sites for IAV surveillance and monitoring. The social change implications of this study can be recognized at the national and international levels, to the population level, and to the individual level by providing geospatial analysis and spatial-temporal data for IAV surveillance, initiating biosecurity measures to protect poultry industries in the United States and Brazil, and contributing to the current IAV strain library. Contributions to the IAV strain library may be used to develop vaccines against human pandemics.
Identifer | oai:union.ndltd.org:waldenu.edu/oai:scholarworks.waldenu.edu:dissertations-1088 |
Date | 01 January 2014 |
Creators | Htway, Zin |
Publisher | ScholarWorks |
Source Sets | Walden University |
Language | English |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Walden Dissertations and Doctoral Studies |
Page generated in 0.0022 seconds