Ce projet de thèse portait sur le développement d’outils microfluidiques pour la toxicologie et la recherche contre le cancer. En permettant l’analyse simultanée d’un très grand nombre de réactions biologiques ou chimiques réalisés dans des compartiments indépendants (ie. gouttelettes), la microfluidique de gouttes offre une sensibilité de détection et une précision sans précédent pour l’analyse de molécules biologiques, telles que l’ADN ou les Anticorps, en comparaison des expériences réalisées conventionnellement en tubes ou en microplaques (essais en « bulk » ou volume). Ce format permet également de réaliser des expériences à très haut débit et est particulièrement pertinent pour la toxicologie, où des analyses robustes de l’effet des médicaments sont nécessaires. De même, ces procédures sont également très adaptées à l’analyse de cellules uniques pour le séquençage ADN ou ARN et l’épigénomique. Tout cela fait de la microfluidique en goutte un outil puissant pour la toxicologie et la recherche sur le cancer. En premier temps, une méthode du comptage précise des cellules encapsulée dans des microgouttelettes, nommée « hémocytométrie microfluidique », a été développée. Un nouvel algorithme de comptage a été proposé. Des cellules bactériennes (Escherichia Coli) et des cellules de 2 lignées humaines différentes (HL60 and H1975) ont été testées. Le nombre de chaque type de cellules a été déterminé avec une haute corrélation entre la théorie (basée sur la distribution de Poisson) et les résultats expérimentaux. Avec ces résultats robustes, un protocole de microfluidique en goutte a été mis en place pour interroger la viabilité cellulaire et la prolifération des 2 lignées humaines. Ces résultats sont en concordance avec ceux de la littérature. Pour la toxicologie, 3 différents modèles, y compris des microsomes (extrait de cellules d’insectes infectées par un baculovirus exprimant le cytochrome P450 3A4 humain, CYP3A4), HepG2-CYP3A4 (modifiée génétiquement pour exprimer le gène CYP3A4 humain), et HepaRG, une lignée hépatique, ont été évaluées pour l’activité enzymatique du CYP3A4, une enzyme largement utilisée en routine pour le criblage de médicament candidat. Les microsomes ont permis de développer un essai fluorogénique permettant de mesurer l’inhibition du CYP3A4. Cependant, ni l’utilisation des microsomes ni des cellules HepG2 exprimant CYP3A4 n’a donné de résultats satisfaisants en microgouttelettes. L’utilisation des cellules HepaRG, une lignée cellulaire qui conserve la majorité de l’expression des cytochromes P450 et des récepteurs nucléaires nécessaire à leur expression, a montré des résultats encourageant à la fois sur les tests de mesure de l’activité enzymatique et d’analyse de l’induction du CYP3A4. Pour la recherche sur le cancer, 4 essais originaux de PCR digitale en gouttes ont été mis en place pour la détection et la quantification de mutations (NRAS, DNMT3A, SF3B1 and JAK2) importante pour les syndromes myélodysplasiques, un groupe hétérogène de maladies touchant les cellules souches hématopoïétiques caractérisées par une hématopoïèse inefficace et des cytopénies périphériques. Finalement, un essai de PCR sur cellule unique encapsulées au sein de billes agarose a été proposé. / This thesis project consists in developing droplet-based microfluidic tools for toxicology and cancer research. Owing to its large numbers of discretized volumes, sensitivity of detection of droplet-based microfluidics for biological molecules such as DNA and antibody is much higher than bulk assays. This high throughput format is particularly suitable for experiments where a robust dose-response curve is needed, as well as for single cell analysis with applications in genomic or sequencing and epigenetics. All above makes droplet-based microfluidics a powerful tool for toxicology and cancer research. In a first part of the work, an accurate cell counting method, named “microfluidics hemocytometry”, has been developed. A new counting algorithm was proposed to count the cells within each droplet. Escherichia Coli and two different human cell lines (HL60 and H1975) were used to validate our strategy. The number of each type of cells in droplets was determined with a high consistency between theory (Poisson distribution) and experimental results. With these robust results, a droplet-based microfluidic protocol has then been established to inquiry both cell viability and proliferation for the two human cell lines. The results are in good agreement with the one of the literature. For the toxicology, 3 different biological models, including microsomes (extracted from baculovirus-infected insect cell expressing human CYP3A4), HepG2-CYP3A4 (genetically modified to express the human CYP3A4 gene) and HepaRG liver cells lines were evaluated for enzymatic activity of cytochromes P450 (CYP3A4), a routinely used enzyme for drug candidate screening. Microsome-based assays were used to validate a fluorogenic inhibition assay. However neither microsome-based assay nor the assay using CYP3A4 expressing HepG2 gave satisfying results in droplet-based format. However, HepaRG cells, a hepatic function-conserved cell line with most cytochrome and related nuclear receptors, demonstrated high relevance both for enzymatic activity testing and CYP3A4 expression induction study. For cancer research, 4 different picoliter droplet-based PCR assays were developed for the detection and quantification of mutations (NRAS, DNMT3A, SF3B1 and JAK2) present in Myelodysplastic syndromes, a heterogeneous group of clonal bone marrow hematopoietic stem cell disorders characterized by ineffective hematopoiesis and peripheral cytopenias. Furthermore, a single cell multistep PCR assay using encapsulation of target DNA in agarose droplets was proposed.
Identifer | oai:union.ndltd.org:theses.fr/2016USPCB064 |
Date | 08 July 2016 |
Creators | Lu, Heng |
Contributors | Sorbonne Paris Cité, Taly, Valérie |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0025 seconds