Sexual differentiation is a fundamental characteristic of all eukaryotes, dictating sex-specific morphology, physiology and behavior. Diploid organisms with heteromorphic sex chromosomes (XX or XY) require regulatory compensation of the X chromosome to maintain correct levels of genetic expression between the sexes, a process termed sex-specific dosage compensation (SSDC). The fruit fly, <i>Drosophila melanogaster</i> dosage compensates by upregulating transcription of most X-linked genes two-fold. Associated with this two-fold up regulation is the male-specific lethal (MSL) complex, a RNA-protein complex comprised of at least five known proteins; MSL1, MSL2, MSL3, males absent on the first (MOF), and maleless (MLE) and two non-translated RNA molecules; roX1 (RNA on the X chromosome) and roX2. The complex modulates the chromatin structure of the male X chromosome via acetylation of H4K16. MOF and MSL3 both exhibit an N-terminal chromodomain, whose function is unclear. The MSL3 chromodomain has been suggested to bind H3K36Me3. Chromodomains are a paradigm of how a single structural fold has evolved in diverse proteins to bind distinct targets. Chromodomains are common to nuclear regulators, and bind diverse targets including histones, DNA, and RNA. They function as recognition motifs of histone post-translational modifications and facilitate the translation of the histone code into a distinct local chromatin structure via recruiting the appropriate chromatin modulating machinery.<p>
The goal of this research is to determine the structure of the <i>D. melanogaster</i> MOF and MSL3 chromodomains by X-ray crystallographic and/or nuclear magnetic resonance techniques, to advance our understanding of the structural characteristics of these diverse domains. Here we report the cloning and reproducible expression and purification of the <i>D. melanogaster</i> MOF and MSL3 chromodomains and their Homo sapiens orthologues. The <i>D. melanogaster</i> MOF chromodomain, whose NMR structure was published during this research, has been crystallized. Attempts to solve the crystal structure by molecular replacement, multiple-wavelength anomalous dispersion, and single-wavelength isomorphous replacement are reported.
Identifer | oai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:SSU.etd-01082009-151958 |
Date | 25 February 2009 |
Creators | Welham, Andrew James |
Contributors | Moore, Stanley A., Luo, Yu, Lee, Jeremy S., Khandelwal, Ramji L., Harkness, Troy, Roesler, William J. |
Publisher | University of Saskatchewan |
Source Sets | Library and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada |
Language | English |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | http://library.usask.ca/theses/available/etd-01082009-151958/ |
Rights | unrestricted, I hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to University of Saskatchewan or its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report. |
Page generated in 0.0019 seconds