Return to search

Toughness enhancement in transition metal nitrides

Toughness enhancements can be induced in cubic-B1 transition metal nitride alloys by an increased occupation of the d-t2g metallic states. In this Licentiate Thesis I use density functional theory to investigate the mechanical properties of TiN and VN and of the ternaries obtained by replacing 50% of Ti and V atoms with M (M = V, Nb, Ta, Mo, and W) to form ordered structures with minimum number of inter-metallic bonds. The calculated values of elastic constants and moduli show that ternary alloys with high valence electron concentrations (M = Mo and W), have large reductions in shear moduli and C44 elastic constants, while retaining the typically high stiffness and incompressibility of ceramic materials. These results point to significantly improved ductility in the ternary compounds. This important combination of strength and ductility, which equates to material toughness, stems from alloying with valence electron richer dmetals. The increased valence electron concentration strengthens metal–metal bonds by filling metallic d-t2g states, and leads to the formation of a layered electronic configuration upon shearing. Comprehensive electronic structure calculations demonstrate that in these crystals, stronger Ti/V – N and weaker M – N bonds are formed as the valence electron concentration is increased. This phenomenon ultimately enhances ductility by promoting dislocation glide through the activation of an easy slip system.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:liu-63364
Date January 2011
CreatorsSangiovanni, Davide Giuseppe
PublisherLinköpings universitet, Tunnfilmsfysik, Linköpings universitet, Tekniska högskolan, Linköping : Linköping University Electronic Press
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeLicentiate thesis, comprehensive summary, info:eu-repo/semantics/masterThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationLinköping Studies in Science and Technology. Thesis, 0280-7971 ; 1462

Page generated in 0.0108 seconds