The arrangement of soft materials through solution processing techniques is a topic of profound importance for next generation solar cells; the resulting morphology has a major influence on construction, performance and lifetime. This thesis investigates the connections between the soft matter physics of colloidal systems and solid state dye sensitised (SSDS) and bulk heterojunction (BHJ) solar cells. A study of aqueous titanium dioxide nanoparticulate suspensions was carried out in order to observe how suspension structure can be controlled by altering the inter-colloid potential via pH-induced electrostatic charging. Measurements were performed at volume fractions between 0.025% and 8.2% with the solution pH set to 3.1, 3.5 or 4.5 before mixing. Suspensions with a volume fraction above 4% formed self-supporting gels regardless of the set pre-mix pH. These gels displayed shear thinning behaviour with a power law exponent of 0.8, a yield stress of 11(1) Pa and rheological response consistent with an aggregated fractal network. At lower volume fractions, suspensions exhibited consolidation interpreted as the collapse of a gel of fractal clusters with a fractal dimension of 2.36. The velocity of the suspension/supernatant interface exhibited delayed sedimentation behaviour, as well as further fractal-based power law scalings with volume fraction. Lower volume fraction suspensions were explored using dynamic light scattering. Limited aggregation of ‘stable’ suspensions was observed when compared to primary aggregate radii measured from electron microscopy images. To connect suspension structure and cell manufacture, the behaviour of more concentrated suspensions was observed during the drying of thin films, a process which forms an essential part of a SSDS solar cell. Lowering the pH of the suspension after mixing from 4 to 3 resulted in an ordering of observed crack domains. An increase in film delamination was also observed. Rates of mass loss during drying followed the expected three phase process, although there was an unexpected increase in rate during the initial phase (where rate is usually constant in time). Dynamic light scattering was found to be a useful but demanding technique for studying cluster formation in titanium dioxide suspensions. A non-linear fitting technique utilising the method of moments was thoroughly explored using computer simulated datasets. The algorithm reduced the systematic error in fitted parameters for moderately polydisperse (0:2 < < 0:4) datasets as compared to the commonly applied linear algorithm. The fitting algorithm was also robust to bad initial estimates of parameters. Finally, test solar cells have been built using blends of titanium dioxide and poly-3-hexylthiophene. Device performance was reduced with blend standing time after mixing but could be improved by remixing the blend before spin coating, implicating a reversible process (e.g. aggregation of titanium dioxide or crystallisation of P3HT) in the loss of performance. Addition of a titanium dioxide hole blocking layer before spin coating reduced cell performance. Combining the above studies and these device designs provides a future platform for continuation of this work in the context of real devices.
Identifer | oai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:578364 |
Date | January 2012 |
Creators | Mailer, Alastair George |
Contributors | Clegg, Paul; Koutsos, Vasileios |
Publisher | University of Edinburgh |
Source Sets | Ethos UK |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Source | http://hdl.handle.net/1842/7651 |
Page generated in 0.0023 seconds