Dans cette thèse, nous nous intéressons à deux approximations hyperboliques des équations de Navier-Stokes incompressibles en dimensions 2 et 3 d'espace. Dans un premier temps, on considère une perturbation hyperbolique de l'équation de la chaleur, introduite par Cattaneo en 1949, pour remédier au paradoxe de la propagation instantanée de cette équation. En 2004, Brenier, Natalini et Puel remarquent que la même perturbation, qui consiste à rajouter ε∂tt à l'équation, intervient en relaxant les équations d'Euler. En dimension 2, les auteurs montrent que, pour des sonnées régulières et sous certaines hypothèses de petitesse, la solution globale de la perturbation converge vers l'unique solution globale de (NS). En 2007, Paicu et Raugel améliorent les résultats de [BNP] en étendant la théorie à la dimension 3 et en prenant des données beaucoup moins régulières. Nous avons obtenu des résultats de convergence, avec données de régularité quasi-critique, qui complètent et prolongent ceux de [BNP] et [PR]. La seconde approximation que l'on considère est un nouveau modèle hyperbolique à vitesse de propagation finie. Ce modèle est obtenu en pénalisant la contrainte d'incompressibilité dans la perturbation de Cattaneo. Nous démontrons que les résultats d'existence globale et de convergence du précédent modèle sont encore vérifiés pour celui-ci. / In this work, we are interested in two hyperbolic approximations of the 2D and 3D Navier-Stokes equations. The first model we consider comes from Cattaneo's hyperbolic perturbation of the heat equation to obtain a finite speed of propagation equation. Brenier, Natalini and Puel studied the same perturbation as a relaxed version of the 2D Euler equations and proved that the solution to this relaxation converges towards the solution to (NS) with smooth data, provided some smallness assumptions. Later, Paicu and Raugel improved their results, extending the theory to the 3D setting and requiring significantly less regular data. Following [BNP] and [PR], we prove global existence and convergence results with quasi-critical regularity assumptions on the initial data. In the second part, we introduce a new hyperbolic model with finite speed of propagation, obtained by penalizing the incompressibility constraint in Cattaneo's perturbation. We prove that the same global existence and convergence results hold for this model as well as for the first one.
Identifer | oai:union.ndltd.org:theses.fr/2013EVRY0015 |
Date | 15 November 2013 |
Creators | Hachicha, Imène |
Contributors | Evry-Val d'Essonne, Banica, Manuela Valeria, Lemarié, Pierre Gilles |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French, English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text, StillImage |
Page generated in 0.0018 seconds